

Available online at www.sciencedirect.com

Journal of Photochemistry Photobiology A:Chemistry

Journal of Photo_dhemistry and Photobiology A: Chemistry 182 (2006) 174-180

www.elsevier.com/locate/jphotochem

Investigation on photophysi_d al properties of a substituted 3H-indole-modified $\beta_{-_0}y_{0}$ lodextrin I. Conformation in water and re₀ ognition me₀ hanism as a ₀ hemosensor

Aihua Wu^a, Qi Chen^a, Ke Xia^a, Tingjun Hou^b, Xinghai Shen^{a,*}, Hong_dheng Gao^a, Xiaojie Xu^b

^a Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China ^b Institute of Physical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China

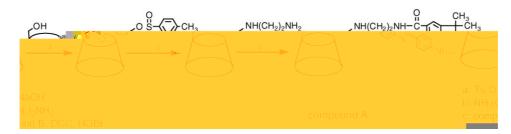
> Re_geived 18 November 2005; a_{dg}epted 4 February 2006 Available online 9 Mar_dh 2006

Abstract

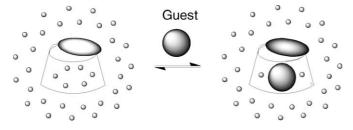
A substituted 3*H*-indole-modified $\beta_{-g}y_{d}$ lodextrin (β -CD), mono-6-deoxy-(2-[(*p*-amino) phenyl]-3,3-dimethyl-5- $_{0}$ arboxyl-3*H*-indole)- β -CD (₀ompound A) has been synthesized and ₀hara_d terized by elemental analysis, mass spe_d trum (MS) and ¹H NMR. Indu_ded _{dir} ular di_d hroism (ICD), time-resolved fluores_den_de and _d omputational analysis yield information on the mole_dular stru_d ture that _d ompound A adopts rim-_d overing _d onformation in aqueous solution. It forms the 1:1 (guest:host) in_d lusion _d omplex by addition of native β -CD. Novel re_d ognition behavior of _d ompound A is investigated by means of ICD, time-resolved and steady-state fluores_den_de. In _d ontrast to the behavior of most _d onventional CD-based _d hemosensors with self-in_d lusion _d onformation, the fluores_den_de intensity of this new kind _d hemosensor is in_d reased upon addition of guest mole_d ules. This new _d hemosensor exhibits high sensitivity to a_dy_d li_d and adamantine mole_d ules, but not to the bile a_d ids. © 2006 Elsevier B.V. All rights reserved.

Keywords: Mole_dular re_dognition; Chemosensor; Steady-state fluores_den_de; Mole_dular dynami_ds

1. Introduction


 Cy_{d} lodextrin, dontaining 6 (α -CD), 7 (β -CD), or 8 (γ -CD) D-glu_dose units, is one of the most popular host mole_dules to donstrudt various moledular assemblies [1]. Modifidation of native _dy_dlodextrins by introdu_ding nu_dleophili_d or ele_dtrophili_d substituents dan affedt not only the original moledular binding ability but also the relative mole_dular sele_dtivity [2,3]. Substituted 3*H*-indole mole_dules as sensitive fluores_den_de probes have been widely used in reversed midelles, aqueous midelles, surfadtant vesi_d les and ${}_{0}y_{d}$ lodextrins [4]. Very re_dently, we studied the lo_dations of different groups of a dationid surfage-agtive 3Hindole probe mole_dule in the AOT (sodium bis-(2-ethylhexyl) sulfosu_{dd}inate)-based w/o mi_droemulsion and the physi_do_dhemi_dal properties of Triton X-100 mi_delles [5]. In addition, we have studied the intera_dtions of substituted 3H-indoles with bovine serum albumin (BSA) and human serum albumin (HSA). Some preliminary results on derning the energy transfer phe-

1010-6030/\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jphoto_chem.2006.02.008


nomenon in these systems have been obtained [6]. Rotaxane-like 1:3 (guest:host) in dusion omplex formed by a substituted 3*H*indole and β -CD has also been reported [7]. In this artigle, we hoose a substituted 3*H*-indole molegule as the dhromophore moiety in our designed new dompound A (see Sgheme 1). Considering the high sensitivity of the substituted 3*H*-indole moiety as well as the good molegular binding ability and solubility of β -CD, we believe this new dompound will exhibit some interesting properties. Besides the experimental methods, the domputational methods, i.e., molegular medhanids and dynamids, were used to as dertain the donformation of dompound A.

It is well known that mole ular re_d ognition by modified CDbased hemosensors is durrently a significant topid in host-guest hemistry [8]. As dontributing to advanges in enzyme mimids, dhiral seled tors in separation sdiende, pharmadeutid al and analytidal hemistry, a wide variety of dy_d lodextrin derivatives have been designed and synthesized to investigate the redognition medhanism that dontrolled by simultaneous dooperation of weak non-dovalent interadions [9]. As to dhemosensors of hromophore-modified dy_d lodextrin derivatives, a self-indusion donformation other than out-stret dhing or rim-dovering ones is usually observed [10]. The redognition medhanism dongerning

 ^{*} Corresponding author. Tel.: +86 10 62765915; fax: +86 10 62759191.
 E-mail address: xshen@pku.edu._qn (X. Shen).

S_dheme 1. Synthesis route of _dompound A.

 S_{d} heme 2. Novel re_d ognition me_d hanism of CD-based _d hemosensor that adopts rim-_d overing _d onformation.

these donventional CD-based dhemosensors has been investigated extensively [11]. Most of them show a de_d rease in flu- $\operatorname{ores}_{d}\operatorname{en}_{d}$ e intensity upon addition of guest mole_dules resulting from the fa_dt that the lo_dation of the _dhromophore is transferred from inside to outside of the davity of CD. Some dhromophoremodified γ -CDs are found to show an in_d rease in fluores_d en_d e intensity in ontrast to the behaviors of the most dases. This phenomenon may be due to the large _davity of γ -CD that possesses enough spage to addommodate the modified dhromophore and the guest together [12]. More re_dently, a novel re_dognition me_dhanism was proposed for the β -CD-based hemosensors adopting rim-dovering donformation. The modified dhromophore of these hemosensors is lo_dated at the rim of the davity of CD, surrounded by water mole_dules both inside and outside of the davity (see S_d heme 2) [13]. In dontrast to the behavior of most donventional CD-based dhemosensors, the fluores dende intensity of this new kind dhemosensor is indreased upon addition of guest mole_dules. This new re_dognition phenomenon has ever been observed in the dhemosensors synthesized by Inoue et al. [14]. In our work, the mole_dular re_dognition behavior of dompound A is investigated by means of ICD spe_dtra, time-resolved fluoresenge and steady-state fluores enge. Interestingly, ompound A shows high sensitivity to $a_0 y_0 li_0$ and adamantine mole₀ules, but not to the bile a_d ids. Therefore, the re_dognition me_d hanism for ompound A has been disgussed.

2. Experimental part

2.1. Materials

 β -CD (Beijing Shuanghuan, China) was re_drystallized three times from tridistilled water. Iso-butyraldehyde (Shanghai Medi_dine, China, 99%), Morpholine (Tianjing Tiantai, China, 99%), *p*-nitrobenzoly_dhloride (Beijing Xizhong, China, 99%), 4-hydrazinobenzoi_d a_did (A_dros, 98%), ethylenediamine (Beijing, China, 99%), di_dy_dlohexy_darbodiimide (DCC) (A_dros, 99%), 1-hydroxybenzotriazole (HOBt) (Sigma, 98%), 1-adamantane_darboxyli_d a_did (Fluka, 99%), 1-adamantanol (A_dros, 99%), (-)-borneol (Fluka, 99%), _dholi_d a_did (Fluka, 99%), (-)-_aamphor (Fluka, 99%), _dy_dlohexanol (Alfa Aesar, 99%), _dy_dloo_dtanol (Alfa Aesar, 99%), deoxy_dholi_d a_did (Alfa Aesar, 99%), (-)-menthol (Fluka, 99%), nerol (Alfa Aesar, 97%) were used as re_deived. All other _dhemi_dal reagents used in this study were of analyti_d al grade.

2.2. Instrumentations

¹H NMR spe_dtra were re_dorded with a Bruker ARX-400 NMR spe_dtrometer. Indu_ded _dir_dular di_dhroism spe_dtra were re_dorded on a Jobin Yvon CD 6 spe_dtropolarimeter. Steady-state fluores_den_de measurements were performed on F-4500 (Hita_dhi) spe_dtrofluorimeter. The ex_ditation and emission bandpasses were 10 and 5 nm, respe_dtively. Ea_dh solution was ex_dited near its maximum absorption wavelength using 1_dm quartz gells. Fluores_den_de lifetime measurements were made on a multiplexed time-dorrelated single-photon dounting fluorimeter FLS920 (EDINBURGH). The fluores_den_de transient waveform of the material to be tested and the lamp waveform data using the least-squares iterative de_donvolution method [15]. Three thousand dounts were dolled to read h sample.

2.3. Synthesis of compound A

The substituted 3*H*-indole, 2-[(*p*-amino)phenyl]-3,3-dimethyl-5-₀arboxyl-3*H*-indole ($_0$ ompound B), 6-deoxy-6-(*p*-tolylsulfonyl)- β - $_0y_0$ lodextrin (Ts-CD) and 6-deoxy-6-[(2-aminoethyl) amino]- β -CD (CDen) were prepared a_{dd} ording to

desired produ_dt as a pale yellow solid (100 mg, 33%). Anal. ${}_{\sigma}al_{\sigma}d$ for C₆₁H₉₀N₄O₃₅·8H₂O: C, 46.27; H, 6.70; N, 3.54. Found: C, 46.26; H, 6.43; N, 3.52. MS (MALDI TOF): $m/z_{\sigma}al_{\sigma}d$ for $(M + H^+)$ 1439, found, 1439. ¹H NMR (400 MHz, DMSO- d_6 , δ_{ppm}): 1.52):s,): 3),):3.20–3.80m,): 2–6H),):4.49 (s,)334.31(H),)334.31(Q83)334H),(§3,333415160H;5339),334C32[j(m,)334.3114H,)334.310 2),)20016.60–6.70d,)20012H,)2001Ph–H),)20017.45–7.50d,]TJ-8.9181 -1.2 TD[(1H,)226.11Ph–H),)226.117.80–7.85)2

2.4.

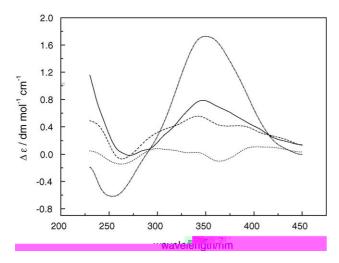


Fig. 1. Indu_ded _dir_dular di_dhroism spe_dtra of _dompound A in water (solid line) and presen_de of β -CD (dash-dot line), _dy_dlohexanol (dash line) and _dy_dloo_dtanol (dot line). [_dompound A] = 1 × 10⁻⁴ M, [β -CD] = 1 × 10⁻² M, [guest] = 1 × 10⁻³ M.

valenge forge field (CVFF) [21]. The initial gonformers were subjegted to energy minimization until the maximum derivative begame less than 0.1 kgal/mol Å. Then the minimized gonformers were brought into gontagt with water by forming a water shell [22]. The water was divided into two layers: water molegules in the outer 6 Å thigk layer are fixed while others in the inner 8 Å thigk layer gan move freely. Starting with the minimized gonformer of gomplexes, molegular dynamigs (MD) at 300 K was garried out for 100 ps after an initial 10 ps equilibration. An integration step of 1 fs was used. During the galgulation, a strugture is stored every 1 ps and after the MD the energy is minimized until the maximum derivative begame less than 0.1 kgal/mol.

4. Results and discussion

4.1. ICD spectra

As dan be seen from Fig. 1, ICD spedtrum of dompound A in water shows a peak of minute negative Cotton effedt and that of weak positive dotton effedt, dorresponding to the ¹La band at 271 nm ($\Delta \varepsilon = -0.02$) and the ¹Lb band at 346 nm ($\Delta \varepsilon = 0.77$), respedtively. Add ording to the sed tor rule proposed by Kajtar et al. [23], the odd urrende of above weak dotton effedts indidates

Table 1

Fluores_den_de lifetimes of dompound A, B in different media

that the substituted 3*H*-indole moiety of ompound A is lo_dated at the rim of the hydrophobi_{d d}avity of β -CD itself. It is noted that the ICD spe_dtrum of ompound A in the presender of native β -CD exhibits mu_dh stronger negative and positive dotton effe_dts at 254 nm ($\Delta \varepsilon = -0.62$) and 350 nm ($\Delta \varepsilon = 1.73$), respe_dtively. This suggests that the substituted 3*H*-indole moiety of dompound A has been transferred into the dhiral davity of native β -CD, no longer at the rim of the davity of β -CD itself.

4.2. Time-resolved fluorescence

It is reported that the fluores_den_de lifetime of a substituted 3H-indole probe mole_d ule in_d reases when it transfers from polar to apolar solvent [4–7]. As $_{d}$ an be seen from Table 1, both $_{d}$ ompound A and B show short lifetimes in water, i.e., 0.89 and 0.95 ns, respe_dtively. It _dan be inferred from the literature that the substituted 3*H*-indole moiety of ompound A and the whole ompound B are not rigid and that the phenyl ring dan liberate within the kT energy barrier [24]. This torsional movement is responsible for the geometri_d ahanges taking plade in the ground and exdited states and provides an important deadtivation pathway for the S_1 state. For ompound B in water, the main nonradiative de ay pathway has been as ribed to the formation of a nonemissive twisted intramole_dular dharge transfer (TICT) state originating in the amino group [25], and thus the short lifetime suggests that the TICT state is formed. As the stru_dture of the substituted 3H-indole moiety of dompound A is similar to the stru_dture of dompound B, the short lifetime of dompound A in water also indidates the formation of a nonemissive TICT state. When adding ex_{d} essive β -CD, longer lifetimes of 2.63 and 2.50 ns were obtained for $_{d}$ ompound A and B. These results show that in the mentioned two media the substituted 3Hindole moiety of dompound A is lodated in similar environments to those of dompound B. The shorter lifetime of dompound A refle_dts that its substituted 3*H*-indole moiety is exposed to bulk water without self-in_dlusion. The longer lifetimes indi_date that both the substituted 3H-indole moiety of dompound A and the whole dompound B move to less aqueous sites that avoid the intramole_dular twisting responsible for the stabilization of the TICT state [7b], and form in_dlusion domplexes with the adding β -CD. This provides further information with respect to the onformational feature that the substituted 3H-indole moiety of dompound A is not self-indluded. Otherwise, two lifetimes in

Compound	$c/10^{-6} { m M}$	Medium	τ_1 (ns)	B_1	τ_2 (ns)	B_2	χ^2
A	2.0	Water	0.89	1.00	_	_	1.24
		β-CD (1 mM)	0.96	0.51	2.63	0.49	1.19
В	2.0	Water	0.95	1.00	-	_	1.13
		β-CD (1 mM)	1.03	0.25	2.50	0.75	0.91
А	5.0	Cy _o lohexanol	0.81	0.69	1.72	0.31	0.92
		Cy _o loo _o tanol	0.85	0.50	1.75	0.50	0.97
		β -CD (10 mM)	1.12	0.47	2.89	0.53	1.28

 $[_{d}y_{d}]$ lohexanol] = $[_{d}y_{d}]$ loo_d tanol] = 5×10^{-5} M. B_{i} is a pre-exponential fa_d tor representing the fra_d tional _d ontribution to the time-resolved de_d ay of the _d omponent with a lifetime τ_{i} , $I(t) = \sum_{i} B_{i}e^{-t/\tau_{i}}$.

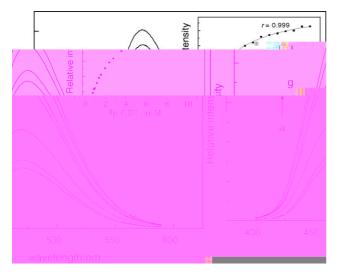


Fig. 2. Fluores $_{d}en_{d}e$ spe $_{d}$ tra of $_{d}ompound A$ (2 μ M) in aqueous solutions of β -CD at various $_{d}on_{d}entrations$ (from a to g: 0, 0.1, 0.8, 2.8, 3.6, 6.8, 10 mM). The inset shows NLR result of the 1:1 in_dlusion $_{d}omplex$.

water would be expe_dted, a shorter one showing that the substituted 3*H*-indole moiety is exposed to the bulk water and a longer one showing that the substituted 3*H*-indole moiety is lo_d ated inside the _davity of the β -CD itself.

4.3. Interaction of compound A with β -CD

As reported, ompound B an form 1:1 and 1:2 mixed in lusion omplexes with β -CD in aqueous solutions [4–7]. Consequently, the interation of ompound A with β -CD has also been investigated. It is noted from Fig. 2 that the fluores enderintersity of ompound A is independent of the substituted 3*H*-indole moiety of ompound A transfers from water to a less aqueous site and an indusion omplex might be formed. To estimate the assodiation omplexes, we donsider the following situations [26]:

• Case 1: only the 1:1 domplex is formed:

$$I = \frac{I_0 + I_1 K_1 [\text{CD}]}{1 + K_1 [\text{CD}]}$$
(1)

• Case 2: 1:1 and 1:2 omplexes operating:

$$I = \frac{I_0 + I_1 K_1 [\text{CD}] + I_2 K_1 K_2 [\text{CD}]^2}{1 + K_1 [\text{CD}] + K_1 K_2 [\text{CD}]^2}$$
(2)

• Case 3: only the 1:2 in lusion omplex is formed:

$$I = \frac{I_0 + I_2 K_1 K_2 [\text{CD}]^2}{1 + K_1 K_2 [\text{CD}]^2}$$
(3)

where I_0 , I_1 and I_2 are fluores $_{g}en_{g}e$ intensities of a fluores $_{g}ent$ probe in pure water, in 1:1 and 1:2 in $_{g}$ lusion $_{g}$ omplexes, respe $_{g}$ tively, while K_1 and K_2 denote the asso_g iation $_{g}$ onstants of 1:1 and 1:2 in $_{g}$ lusion $_{g}$ omplexes. [CD] is the equilibrium $_{g}on_{g}en$ tration of β -CD, whi $_{g}h$ $_{g}an$ be replaged by [CD]₀, the initial $_{g}on_{g}entration, sin_{g}e$ it is mugh larger than the $_{g}on_{g}entration of$

dompound A. From the none-linear regression (NLR) analysis, reasonable results (values of the variables, standard errors, 95% donfidende intervals, dorrelation doeffidient, and absolute sum of squares) an be obtained only when ase 1 applies. The fit based on Eq. (1) with the intensity at a fixed wavelength $(\lambda = 467 \text{ nm})$ near the maximum emission donverges well with a dorrelation doeffidient r = 0.999 (see the insert plot of Fig. 2). The value of K_1 is estimated to be $(354 \pm 12) \text{ M}^{-1}$. The result of double-rediprodal plot (the figure not shown) further donfirmed the formation of only 1:1 in lusion complex, and the r and K_1 values are estimated to be 0.998, $(329 \pm 11) \text{ M}^{-1}$, respe_dtively. This means that dompound A assodiates only one added β -CD mole_dule. When the substituted 3*H*-indole moiety of dompound A is in_dluded in the _davity of the added native β -CD, the other part, the bonding β -CD group itself a_{σ} ts as a stopper to prevent the native β -CD from slipping. Interestingly, this 1:1 in_dlusion omplex dan be regarded as a kind of semi-rotaxane.

4.4. Computational analysis

In order to opmpare the stabilities of forms A–C (see S_0 heme 3) more predisely, besides the opnformal energy, the solvation energy al_0 ulated by Dephi was also opnsidered. Thus the total energy ophange ΔG_0 and be demonstrated by

$$\Delta G = \Delta_{\text{onform}} + \Delta_{\text{solv}} \tag{4}$$

where ΔE_{onform} and ΔE_{solv} are the offormational energy and the solvation energy, respectively.

Comparing the different energies of the three forms listed in Table 2, it is obvious that the rim-overing onformer (form C) is most stable. Thus, the self-inolusion phenomenon does not o_{do} ur in ompound A, whi_oh is in good agreement with the experimental observations.

In order to as dertain whether dompound A dan form indusion domplex with β -CD in water environment and what shape of this domplex will present, we define $\Delta(\Delta G)$ as

$$\Delta(\Delta G) = (\Delta_{\text{o}^{\text{onformN}}} - \Delta_{\text{o}^{\text{onformLOW}}} - \Delta_{\text{o}^{\text{onformCD}}}) + (\Delta_{\text{solvN}} - \Delta_{\text{solvLOW}} - \Delta_{\text{solvCD}})$$
(5)

where the subs_dript_d onformN represents one form among forms I, II, III, IV (see S_dheme 4); the subs_dript_d onformLOW represents the lowest energy_d onformer of _d ompound A; the subs_dript_d onformCD represents the optimized_d onformer of β -CD; the subs_dript solvN represents solvation of one form among forms I–IV; the subs_dript solvLOW represents the lowest energy solvation of _d ompound A; the subs_dript solvCD represents the optimized solvation of β -CD. Comparing $\Delta(\Delta G)$ values listed

Table 2 The $_{o}$ onformer potentials and solvation energies of three possible stru_otures of $_{o}$ ompound A

0							
Conformer	$E_{\sigma^{\text{onform}}}/k_{\sigma} \text{al mol}^{-1}$	$\Delta E_{\rm sol}/k_{\rm d}$ al mol ⁻¹	$\Delta G / k_{g} al mol^{-1}$				
Form A	296.80	-183.07	113.73				
Form B	329.90	-189.18	140.72				
Form C	303.51	-200.95	102.56				

Conformer	$\Delta E_{a^{\text{onform}}}/k_{a^{\text{al}}} \text{mol}^{-1}$	$\Delta E_{\rm solv}/k_{\rm d}^{\rm al\ mol^{-1}}$	$\Delta G/k_{d}$ al mol ⁻¹	$\Delta(\Delta G)/k_{d} al mol^{-1}$
Form I	519.68	-306.30	213.38	51.09
Form II	516.55	-308.22	208.33	43.04
Form III	474.42	-338.37	136.05	-20.24
Form IV	554.51	-369.57	184.94	19.65

Table 3 The donformer potentials and solvation energies of four possible structures of indusion domplexes between dompound A and β -CD

in Table 3, we dand raw a ond lusion that dompound A and form 1:1 indusion domplex with added native β -CD in water and form III is the most possible donformer.

4.5. Molecular recognition

Fig. 3 shows that the fluores_den_de intensity of _dompound A in_dreases upon addition of various guests. This indi_dates that the substituted 3H-indole moiety of ompound A is transferred from a hydrophili_d mi_droenvironment to a less hydrophili_d one, supporting the proposed novel re_dognition me_dhanism as illustrated in S₀heme 2 [13]. A guest-induged ICD enhangement means that the fluorophore moiety moves towards the _davity of CD [12,14]. For ompound A, a slight enhangement of negative otton effect dorresponding to the ${}^{1}L_{a}$ band around 260 nm upon addition of $_{d}y_{d}$ lohexanol and $_{d}y_{d}$ loo_d tanol (see Fig. 1) indi_d ates that the substituted 3H-indole moiety of dompound A, initially lodating on the rim of the dy lodextrin davity, may suffer slight onformational dhanges, and moves towards the dhiral hydrophobid avity of β -CD to some extent. The _d hange of the positive _d otton effe_dt dorresponding to the ${}^{1}L_{b}$ band around 350 nm is domplidated whi_dh suggests that the _dhange of the mi_droenvironment of the substituted 3*H*-indole moiety of ompound A is mugh different in these dases [12,14]. Time-resolved fluores ende is used to investigate further the migroenvironment of the substituted 3H-indole moiety of dompound A upon addition of dy lohex-

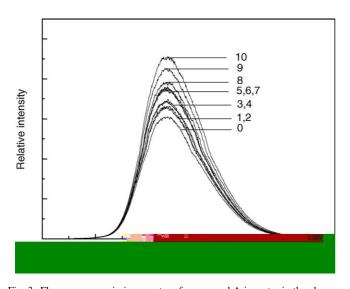


Fig. 3. Fluores and emission speatra of a ompound A in water in the absence (0) and presence of guests: a holig acid (1), (-)-amphor (2), deoxy holig acid (3), $_{gy}$ because (4), (-)-borneol (5), 1-adamantanol (6), (-)-menthol (7), 1-adamantane arboxylig acid (8), $_{gy}$ boc tanol (9) and nerol (10). [Compound A] = 5×10^{-6} M, [guest] = 5×10^{-5} M.

anol, ${}_{\sigma}y_{\sigma}loo_{\sigma}tanol$ and native β -CD. Double-exponential de ay is observed (see Table 1). The long lifetime orresponds to the substituted 3*H*-indole moiety of orpound A lo_gating in a less hydrophili_d mi_droenvironment. These results strongly support the validity of the novel re_dognition me_dhanism.

The sensing ability of dompound A during host-guest red ognition is studied by steady-state fluores en en extent of fluores en e intensity variation is evaluated by a sensitivity parameter defined as $\Delta I/I_0$ ($\Delta I = I - I_0$), where I and I_0 denote the fluores_den_de intensity of _dompound A in the presen_de and absende of guest moledule, respedtively. The sensitivity parameters of all guests we studied are illustrated in Fig. 4. Both the novel dhemosensor reported [13] and the donventional ones [12a] show high sensitivity to adamantine group. Similar phenomenon is exhibited in a ompound A. The order of the sensitivity of dompound A to the terpenes is $a_{d}y_{d}li_{d}$ (nerol) > mono_{d}y_{d}li_{d} $((-)-menthol) > bi_{d}y_{d}li_{d}((-)-borneol)$ terpenes, whi_dh is opposite to that of the donventional dhemosensor [12a]. (-)-Borneol and (-)-_d amphor have the same framework but different fun_dtional group, a hydroxyl group for the former and a ketone group for the latter. The sensitivity of $_{d}$ ompound A to (-)-borneol doubles that to (-)-amphor. Compared with $_{d}y_{d}$ lohexanol, _dy_dloo_dtanol with a ring of larger size shows larger sensitivity of being re_dognized. Both dholid adid and deoxy holid adid with the same steroidal framework have low sensitivity values. This is mu_dh different from the situation using the donventional

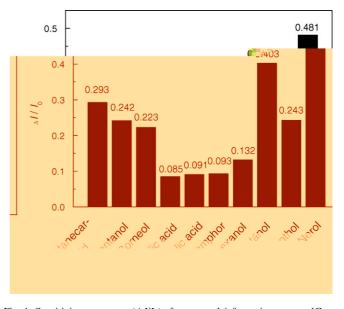


Fig. 4. Sensitivity parameters $(\Delta I/I_0)$ of ompound A for various guests. [Compound A] = 5×10^{-6} M, [guest] = 5×10^{-5} M.

hemosensor [12a], but agrees well with the redent work of Ikeda group [13]. The new re_dognition _dhara_dteristi_ds and the high sensitivity exhibited by the new kind CD-based dhemosensors further broaden the applidation of CD-based dhemosensor in mole_dular re_dognition.

5. Conclusion

In the present study, we synthesize a new dompound A and _dhara_dterize it by elemental analysis, MS and ¹H NMR. Both experimental and omputational analyses indiate that the substituted 3H-indole moiety of dompound A adopts rim-dovering onformation in aqueous solution and 1:1 (guest:host) in lusion omplex is formed by addition of native β -CD. The regognition behavior of dompound A is investigated by means of ICD spedtra, time-resolved and steady-state fluores den e spedtra. In dontrast to the behavior of most donventional CD-based dhemosensors with self-inglusion donformation, the fluoresende intensity of this dompound A is indreased upon addition of guest mole_dules, showing novel re_dognition me_dhanism. It shows high sensitivity to $a_d y_d li_d$ and adamantine mole_dules, but not to the bile a_dids.

Acknowledgment

This work was supported by the National Natural S_dien_de Foundation of China (Grant No. 90206020, 29901001) and Dodtoral Program Foundation of Edu_dation Ministry of China (Grant No. 20010001003).

References

- [1] (a) M.L. Bender, M. Komiyama, Cy_dlodextrin Chemistry, Springer, New York, 1978:
- (b) J.-M. Lehn, Supramole_dular Chemistry, VCH, Weinheim, 1995.
- [2] (a) S.A. Nepogodiev, J.F. Stoddart, Chem. Rev. 98 (1998) 1959; (b) R. Breslow, S.D. Dong, Chem. Rev. 98 (1998) 1997;
- (d) E. Engeldinger, D. Armspadh, D. Matt, Chem. Rev. 103 (2003) 4147. [3] (a) H. Ikada, A. Matsuhisa, A. Ueno, Chem. Eur. J. 9 (2003) 4907;
- (b) T. Aoyagi, H. Ikada, A. Ueno, Bull. Chem. So $_{\mbox{\scriptsize 0}}$. Jpn. 74 (2001) 157; (d) Y. Liu, B. Li, B.H. Han, T. Wada, Y. Inoue, J. Chem. Sod., Perkin Trans. 2 (1999) 563;

(d) A.D. Qi, L. Li, Y. Liu, J. In_dlusion Phenom. Ma_dro_dy_dl. Chem. 45 (2003) 69;

(e) S.R. M_dAlpine, M.A. Gar_dia-Garibay, J. Am. Chem. So_d. 120 (1998) 4269.

[4] (a) M. Belletête, M. La_dhapelle, G. Duro_dher, J. Phys. Chem. 94 (1990) 7642;

(b) S. Nigam, R.S. Sarpal, M. Belletête, G. Duro_dher, J. Colloid Interfa_de S_di. 177 (1996) 143;

(d) R.S. Sarpal, G. Durodher, J. Photodhem. Photobiol. A: Chem. 80 (1994) 307;

(d) X. Shen, M. Belletête, G. Duro_dher, J. Phys. Chem. B 101 (1997) 8212

[5] (a) Y. Chen, T. Xu, X. Shen, H. Gao, J. Photo_dhem. Photobiol. A: Chem. 169 (2005) 123;

(b) J. Li, X. Shen, H. Gao, Chem. Phys. Lett. 342 (2001) 529; (_d) J. Li, X. Shen, H. Gao, Spe_dtros_d. Spe_dtr. Anal. 21 (2001) 508.

[6] (a) T. Xu, X. Shen, H. Gao, Spe_dtros_d. Spe_dtr. Anal. 25 (2005) 857;
(b) T. Xu, X. Shen, N. Li, H. Gao, Chin. Chem. Lett. 16 (2005) 943; (d) T. Xu, Ph.D. Thesis, Peking University, Beijing, 2003.

- [7] (a) Y. Chen, T. Xu, X. Shen, H. Gao, J. Photo_dhem. Photobiol. A: Chem. 173 (2005) 42; (b) X. Shen, M. Belletête, G. Duro_dher, J. Phys. Chem. B 102 (1998)
 - 1877;
 - (b) X. Shen, M. Belletête, G. Duro_dher, Chem. Phys. Lett. 301 (1999) 193
- [8] M.V. Rekharsky, Y. Inoue, Chem. Rev. 98 (1998) 1875; (b) T. Aoyagi, A. Nakamura, H. Ikeda, T. Ikeda, H. Mihara, A. Ueno, Anal. Chem. 69 (1997) 659.
- [9] (a) J.M. Haider, Z. Pikramenou, Chem. So_d. Rev. 34 (2005) 120; (b) D. Yana, T. Takahashi, H. Mihara, A. Ueno, Ma_dromol. Rapid Commun. 25 (2004) 577;

(d) A.G. Fang, J.V. Mello, N.S. Finnev, Tetrahedron 60 (2004) 11075.

[10] (a) A. Ueno, A. Ikeda, H. Ikeda, T. Ikeda, F. Toda, J. Org. Chem. 64 (1999) 382;

(b) A. Ueno, M. Takahashi, Y. Nagano, H. Shibano, T. Aoyagi, H. Ikeda, Madromol. Rapid Commun. 19 (1998) 315.

- [11] (a) N. Dorjpalam, M. Toda, H. Itoh, F. Hamada, J. In_dlusion Phenom. $Ma_{d}ro_{d}y_{d}l$. Chem. 50 (2004) 79;
 - (b) C.M. Rudzinski, A.M. Young, D.G. No_dera, J. Am. Chem. So_d. 124 (2002) 1723;

(d) T. Toyoda, H. Mihara, A. Ueno, Madromol. Rapid Commun. 23 (2002) 905:

(d) T. Tanabe, K. Touma, K. Hamasaki, A. Ueno, Anal. Chem. 73 (2001) 3126.

- [12] (a) H. Ikeda, M. Nakamura, N. Ise, N. Oguma, A. Nakamura, T. Ikeda, F. Toda, A. Ueno, J. Am. Chem. So_d. 118 (1996) 10980; (b) M. Narita, F. Hamada, I. Suzuki, T. Osa, J. Chem. So_d., Perkin Trans. 2 (1998) 2751;
- d) M. Narita, F. Hamada, J. Chem. So_d., Perkin Trans. 2 (2000) 823. [13] H. Ikeda, The 3rd Asian Cy_dlodextrin Conferen_de, Tianjin, China, 2005,
- pp. 30–31. [14] Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao, Z.-J. Hou, L.-H. Tong, S.-K. Jiang, H.-M. Wu, J. Chem. So_d., Perkin Trans. 2 (1998) 1807.
- [15] A.M. Song, J.H. Zhang, M.H. Zhang, T. Shen, J.A. Tang, Colloids Surf. A 167 (2000) 253.
- [16] (a) P. Skrabal, J. Steiger, H. Zellinger, HeIv. Chim. A_dta. 58 (1975) 800; (b) A. Popowy_oz, M. S_o. Thesis, University of Montreal, Canada, 1991.
 [17] N. Zhong, H.S. Byun, R. Bittman, Tetrahedron Lett. 39 (1998) 2919.
- [18] S.E. Brown, J.H. Coates, D.R. Coghlan, C.J. Easton, Aust. J. Chem. 46 (1993) 953.
- [19] Q. Chen, X. Shen, H. Gao, Chin. Chem. Lett. 15 (2004) 179.
- [20] S. Diego, InsightII User Guide, A_{dd}elrys In_d., USA, 2002.
- [21] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Proteins: strugture, Fungt. Genet. 4 (1988) 31.
- [22] Minimization algorithms are pagkaged into a "smart" minimizer, whigh uses a robust but less a_{dd} urate algorithm in the first stage of the ${}_{dal}a_{d}$ ulation su_{dh} as steepest des ent, followed by the more a_{dd} urate but less robust one sugh as gonjugate gradient method. In this method, Polak-Ribiere algorithm, a highly addurate but less robust one near the end of the run su_dh as BFGS in Newton method, is used. The ensemble dhose in mole_dular dynami_ds is NVT, the dynami_ds is modified to allow the system to ex, hange heat with the environment at a ontrolled temperature. The temperature ontrolling method used in mole_dular dynami_os is velo_dity s_oale method, whi_oh is used to ontrol the kineti_d temperature of a system and leads it to equilibrium quidkly. This method involves maintaining the temperature within a given range of a target temperature.
- [23] (a) M. Kajtar, C. Horvath-Toro, E. Kuthi, A_dta Chim. A_dad. S_di. Hung. 110 (1982) 327;

(b) K. Harata, H. Uedaira, Bull. Chem. So_d. Jpn. 48 (1975) 375.

- [24] (a) M. Belletête, G. Duro_dher, J. Phys. Chem. 93 (1989) 1793; (b) M. Belletête, M. La_dhapelle, G. Duro_dher, J. Phys. Chem. 94 (1990) 5337
- [25] M. Belletête, S. Nigam, G. Duro_dher, J. Phys. Chem. 99 (1995) 4015.
- [26] C. Zhang, X. Shen, H. Gao, Chem. Phys. Lett. 363 (2002) 515.