pubs.acs.org/JPCB

Multiple Equilibria Interaction Pattern between the Ionic Liquids C_n mimPF₆ and β -Cyclodextrin in Aqueous Solutions

Jingjing Zhang and Xinghai Shen*

iji
$$\sum_{\mathbf{t}}$$
 ti 1 t 1 1 i $(\sum_{\mathbf{t}})$, i wit iti wit t \mathbf{t} t \mathbf{t} it, iji 1000 1 , i

■ INTRODUCTION

i t-i, , i to-(+)- l 1 ti (**D**), it $\boldsymbol{\psi}$ α -, β -, γ - \boldsymbol{D} , ti 1, $\boldsymbol{\psi}$ i 1 i 10 uppe ill ill, ti, t 11, i us tus it1 us tiit **w** tilit, tff, ilii (), i it i ti lt ti t fluor ilit, t l i wil til tiiti, ilt soili t_w tilti it fil gui I ti, 1 t wit. $^{-14}$ t we, it fil und 1 unit, igott. lit itl tiitit well iti ifl t witter **y**oi ti ti**ş** t u t ti t j t.³⁰⁻

Published: September 07, 2011

t tt t i 1 ti, t t ti

$$f_{\pm}^{2} = \left[-\frac{\kappa \beta}{1 + \kappa R} \right] \tag{5}$$

$$\alpha = \frac{-1 + \sqrt{1 + 4K \text{ cf}_{\pm}^{2}}}{2K \text{ cf}_{\pm}^{2}}$$
 (6)

$$\kappa = \left(\frac{\pi N e^2 |z|^2 \alpha c}{1000 \epsilon kT}\right)^{1/2}$$
 ()

$$\vartheta = \frac{|\mathsf{Z}|\mathsf{Fe}}{(2 \quad . \quad)(3\pi\eta)} \qquad \qquad \bigstar)$$

$$\beta = \frac{\mathsf{Z}^2 \mathsf{e}^2}{\varepsilon \mathsf{k} \mathsf{T}} \tag{}$$

$$S = \sum_{i=1}^{n} (\Lambda_{\mathbf{q}_{0}, i}^{1} - \Lambda_{\mathbf{q}_{0}, i})^{2} W_{i}$$
 (10)

Wiit i ti t.

■ RESULTS AND DISCUSSION

Competitive Fluorescence Method. It is the standard stan

$$\begin{bmatrix} \mathbf{n} \mathbf{\psi} \mathbf{i} \mathbf{v} & 6 \end{bmatrix}_0 = \frac{([\mathbf{D}]_0 - [\mathbf{D}])(1 + \mathsf{K}_1[\mathbf{D}])}{\mathsf{K}_1[\mathbf{D}]} \tag{11}$$

$$[_{n}\mathbf{wiw} _{6}]_{0} = \frac{([\mathbf{D}]_{0} - [\mathbf{D}])(1 + K_{1}[\mathbf{D}] + K_{1}K_{2}[\mathbf{D}]^{2})}{K_{1}[\mathbf{D}] + 2K_{1}K_{2}[\mathbf{D}]^{2}}$$
(12)

Table 1. Stoichiometry and Association Constants of KPF₆ and C_0 mimPF₆ (Γ = 2, 4, 6, 8) with β -CD in Water and of C_8 mimPF₆ with β -CD in the Aqueous Solution of Urea by Competitive Fluorescence Method

					≈ thith 6		
	6	2 1.11. 6	4 1.1. 6	6 1. i	= 0	= 3	= 5
ti i p ot	1 1	1 1	1 1	1 1	11 12	11 12	1 1
$K_1/$ $^{-1}$	100 ± 1	121 ± 2	15 ± 3	31 ± 15	11 ± 5	1 3 6 ± 5	± 4
$K_2/$ $^{-1}$	_	_	_	_	25 ± 3	46 ± 15	_

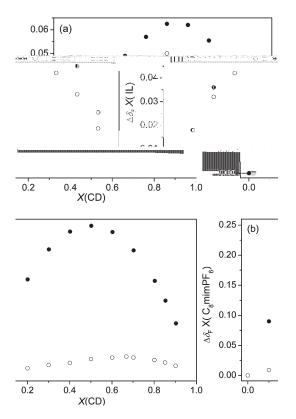
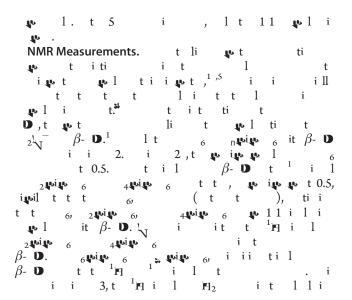



Figure 2. It is up t to be left in the interpolation of the point (0) and (0) and (0) are interpolations are interpolations and (0) are interpolations and (

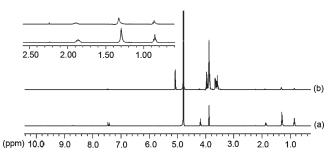


Figure 3. 1 F1 1 $^{$

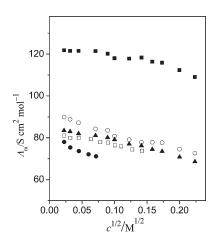


Figure 4. 1 tilt t til new $_{6}$ i t. we then the tile $_{6}$ in t. we then the tile $_{6}$ in the $_{6}$ (\blacksquare), $_{6}$ which $_{6}$ (\square), $_{6}$ (\square).

 β - **D** iti **4.** 1.30 3) t 1.31 3), 1 1 β - **D**.³² 11 i t t β- **D**. iti 5 11i l i t 0.5 i t t l t iti it t titi Conductivity Measurements. 1 ti ti it t t ti iti 10 1 ti

Table 3. Comparison between Observed m/z Values (m/z_{obs}) and Calculated m/z Values (m/z_{calc}) for Equal Moles of C₂mimPF₆ and β -CD (Obtained by ESI/HRMS)

i to I	tt i t i	m/z ₁	m/z	i t it a
-4	$($ ும்டி $-eta$ - $oldsymbol{eta}$) $^+$	1245.461 44	1245.45 05	++
-2	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1413.4153	1413.49 3	+
-5	$(_6-\beta$ - D $)^-$	12 .333 40	12 .3339	++
-2	$(_{2}$ with $_{6}$ $-\beta$ - D + M OO) $^{-}$	1435.423 2	1435.423 00	+
-2	$(_{2}$ L $_{6}$ $-\beta$ - D + $_{6}$) $^{-}$	1535🗯 ৯ 0	1535 \$ 5	+
a it it i it it 45%).	tit II i I ti ti+,	, itt (ltii	t it 4 5%) ++, № j	i (1ti

Table 4. Comparison between Observed m/z Values (m/z_{obs}) and Calculated m/z Values (m/z_{calc}) for Different Molar Ratios of C_8 mimPF₆/ β -CD (Obtained by ESI/HRMS)

i p l	tt i t i	m/z ₁	m/z	i t it a				
$_{s}$ wife $_{6}$ / β - D = 1								
-4	(" with $-eta$ - D) $^+$	132 .555 34	132 .553	++				
-1	$($ \mathbf{b} to \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b}	166 . 05 64	166 . 026	+				
-5	$($ $_6-eta$ - $\mathbf{D})^-$	12 .333 40	12 .3362	++				
	"wito 6/	β - D = 0.5						
-6	$($ ω ω $-eta$ - ω $_2$ + $($ $1-2\mathrm{H})^{2-}$	124 . 405	124 . 406	+				
-6	$(\ _{2}\ _{1})^{2}$ ($\ _{2}\ _{2}$ $\ _{1}$ $\ _{1}$ $\ _{2}$ $\ _{2}$ $\ _{1}$ $\ _{1}$ $\ _{2}$	126 .42 21	126 .42 13	+				
a it it i it it 45%).	tit II i Iti ti-	+, itt(ltiit	t it 4 45%) ++, 4 • j	i (1ti				

 β - **D**. 1,32 tiqualit t t β - **D** i t **p**∗it ti i -1 t 1 tti t 📭 i t 1 t tti t ti it 🔑 **4** 1 $-\beta$ - **D**) (-3) i $-\beta$ - D it it $_{6}^{-}$ - β - **D** (-5). 📭 11 610110 i 1 i r l it β - **D**, 📭 ti 1 2 **b** $\mu^+ - \beta$ **D**₂ (-6) i 1 i **4** 1 \mathbf{L} with \mathbf{L} \mathbf{L} \mathbf{L} ութնաւս[⊤], it i t 1.1 β - D it β - **D** t t t tl i t iti lt i t β - **D** (i tt tt fl t 🚜 it t 🦚 it il t i **w**ilt tl,t i i i i tti lt it t t ili i i t lt, **\psi** lti l ti t β- **D** i 1 ti **4** 2. i t t nation" 11 ₽ li i β - **D** i t i,(β- **D**ti)∙ i $\mathbf{p} \cdot 1 \quad (\beta - \mathbf{D} - \mathbf{t} \mathbf{i}) \cdot$ (i $-\beta$ - **D**) (-2), t ti $-\beta$ - **D** (-4) $i -\beta$ -**D**) (-3) **y** i it it , t i i ti i $-\beta$ - **D** (-5) **4** 1 ilii usti iii l i t tt .

i t ψ t 11 $_{6}^{-}$ - β - **D** (-5) ₆⁻, it i t it β - **D** β - D \mathbf{p} t 11 _n**μ**i \mathbf{p}^+ – β- **D** (-4) դո I . _Ոլակա[†] **№**1 fit, it i β- **D** t nuiv $^+$ - β - \mathbf{D}_2 (-6) up 1 it 11 i (. ., **» t**vitv⁺). i t 6**1**1111 iti -1 1 1 t t -3 ill i -4 r l **1** 11i l i toj to ill i it -4 ill i r l " trito t il t 12 i 1 i -5, -1, -4, i ti ii t -6. , t 1 1 12 i 1 i **₽** 1 : 10i10 6

β- **D**. Thermodynamic Parameters of the Inclusion Complexes. it β - **D** i t i iti it titeta-D արհե արհ . Ly wett t it i i, tit ti i **p**ilt t it β - **D**. i ti tl, t t t t 1 t t 1 1 5). t tii t tt 2 with 4 with it β - **D** i 2**1**111 61**111** iti , t ti i ti-1 5). 6 (6 440110 iti ΔS t t—

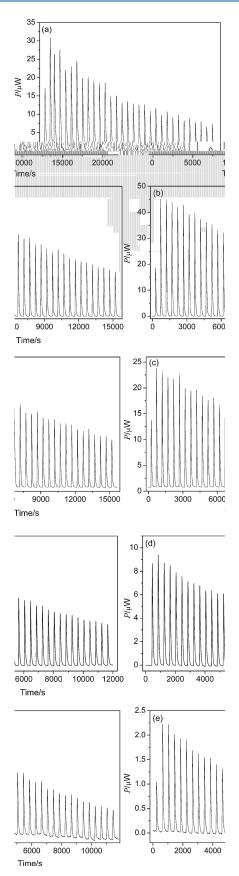
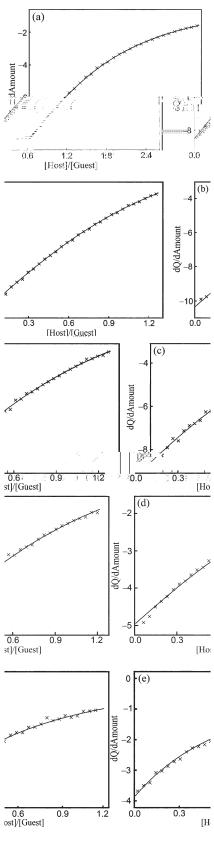



Figure 6. it i tfl P ti tip. Let t t t tt p, t tit t $_{6}()$, $_{2}$ with $_{6}()$, $_{4}$ with $_{6}()$, $_{4}$ with $_{6}()$,

t ,t 1 O t t iti, t t t **D** t 1 t**w** 1 1 t 1 t , i 1 ... + t t i 1 1 t, .D i t i ti ,t 1 ti ti ti ti 11 t t with w1tw11.itittett i. ΔS i t i lt t t . Diff t is nimit $_{6}$ (n=2,4,6), which $_{6}$ 12 i 1 i μ 1 it β - D. i t μ i t ΔS μ ti i. t t ii t 📭 1 ti, tt top it ff tt i ff ti ot tiit it tit ti t 11 woli wo, iil tifi tilt \sim wipe $_6$ it β - Dit 5 (i 2). lt, ttt 📭 i ii t n**uiu** 6 lt , ___ it

■ CONCLUSIONS

i tit t it ti t 1-ll-3-vet livei live fl t $\alpha = 1$, 4, 6 $\alpha = 1$ live fl ti live fl lti l l-i t i t i

11 i l i ψ l (t), i it l i l ψ l t β - \mathbf{D} .

■ AUTHOR INFORMATION

Corresponding Author

* 1. 6-10-62 65 15. \$\dip 6-10-62 5 1 1. -\dip il

ACKNOWLEDGMENT

i 1 i up tti t i iti , .i .i Ha (1ti1 tupt t i it) tili /H i 1 i 1 i i (iji 1_V t) ilili fiill t t **p** t. í i (t 20 100). ti 11_V t 1 i ti

■ REFERENCES

- (1) \mathbf{H} , . $\mathbf{i}_{\mathbf{w}}$, . \mathbf{v} i, \mathbf{H} . Chem. Soc. Rev. 2009, 38, 5, 2.
- (2) , . . i, . , . \mathbf{P} , . , . . Coord. Chem. Rev. **2009**, 253, 12 6–1**2** 4.
 - (3) jtli, . Chem. Rev. 1998, 98, 1 43-1 53.
 - (4) i , . , . Acc. Chem. Res. **2006**, 39, **5** 1–6 1.
 - (5) , . . , . Chem. Rev. 1998, 98, 4 5–1 4 . (6) , . . Chem. Rev. 1997, 97, 1325–135 .
 - , . . Chem. Rev. **1997**, 97, 1325–135 .
- () t , . l i , . jt , . il-Ot , . i. 1- , . Food Hydrocolloids **2009**, 23, 1631–1640.
- **★**) **D** 1 II , . . . Process Biochem. **2004**, 39, 1033–1046.
- () It , . Chem. Rev. 1999, 99, 20 1–20 3.
- (10) , **D**. . , . , . i , . Catal. Today **2002**, 74, 15 -14 .
 - (11) **D** t, . J. Braz. Chem. Soc. **2004**, 15, 341–350.
 - (12) i , . i i i, **D**. J. Phys. Org. Chem. **2005**, 18, 2 5–2 .
- t , rg. Angew. Chem., Int. Ed. 2008, 47, 654-6 0. (13) i
- (14) 1 , . wit , . Supramol. Chem. 2009, 21, 245–263.
- Int. Ed. **2008**, 47, 3435–343 .
- , . itt , Ħ. Macromol. Rapid (1) **w** jj , . t Commun. **2009**, 30, 04– **3**.
 - (a) jj , . itt , rg. Macromolecules 2008, 41, 3250–3253.
 - (1) **№** jj , . itt , **№** . Macromolecules **2008**, 41, 16– 👪 .
- (20) 1 , . wit , . . J. Phys. Org. Chem. 2009, 22, 1– 5. (21) 1 , . , . , . Pl. wit , . . . Chem.—Eur. J. 2009, 15, 632 –6331.
- (22) i , L $_{\rm II}$ t , . li , . . itt , $_{\rm II}$ J. Phys. Chem. B **2010**, 114, 1246 –124 2.
- (23) i**ų**, . . , **D**. . ili . . , . . Ind. Eng. Chem. Res. **2005**, 44, 644, 653. (24) i , .**D**. i, **n**. . i, . . . Analyst **2002**, 127, 4 0–4 3.
- (25) , . H , . i i, . . . Electrophoresis 2009, 30, 2 12-2 1 .
- (26) , . H , . i i, . w i, . . Electrophoresis 2009, 30, 2 20-2 2 .
- , J. Chromatogr., A (2) Fg , . **2010**, 1217, 5261–52 3.
- $(\mathbf{2})$, . . i, . , . . \mathbf{F} , . . Anal. Chim. Acta **2010**, 678, **29** –214.
- (2) , . . , . . , . . . , . . . D. Curr. Org. Chem. **2010**, 15, 4 5.

- (31) u i u, . u , . li , . Int. J. Mol. Sci. 2010,
- 11, 36 5–36 5. (32) , . , . **D** , . , . i, !, , , . J. Phys. Chem. B 2006, 110, 5 6, 5 1.

- , . Colloids Surf., A: Physicochem. Eng. Aspects 2007, 292, 1 6–201. (35) i, . , . i i i - 1 t, . il, . J. Sep. Sci. **200**7, 30, 51– 60.
- (36) 14, . . , . 14. J. Photochem. Photobiol., A: Chem. 2008, 197, 253–25 .
- , .**D**. , . , . , . , . <u>i</u>q. J. Phys. (3) \mathbf{H} , . Chèm. B 2009, 113, 231–23.
- (3), .H, ,.t,.,.ti
- O. J. Chem. Phys. 2008, 129, 10. (3) , . L_V , . t i , O. J. Chem. Phys. **2009**,
- 130, 11.
- (40) , . , . , . \, , . , . , . t i
 O. J. Chem. Phys. **2007**, 127, . (41) , . . , . , . i, H. . J. Phys. Chem. B **2008**,
- (42) j, . . 1 ↓ i , . J. Phys. Chem. B **2009**, 113, 4 → 14 06. 112, 6411–641 .
- (43) **i**, . . lt , . . lt , . . Phys. Chem. Chem. Phys. 2001, 3, 51 2-5200.
- (44) l, . t i , . lli , m. Helv. Chim. Acta 1975, 58**,** 00**,** 14.
- (45) .. i, 😈 i it t l, 1 1.
- (46) , . M. II t t , . **D** , . J. Phys. Chem. B **1998**, 102, 4 -4 3.
- (4) , . M. II t t , . D , . Chem. Phys. Lett. 1999, 301, 1 3–1 .
- (¥) , . . Binding Constants il & , .
- (50) , . M. t , . . J. Chem. Soc., Faraday Trans. 2 1979, 75, 112 –1145.
- (51) t i , .**D**. , . . J. Chem. Soc., Faraday Trans. 1 1980, 76, 36 -3 6.
- , r₁. . , . . , . . i, . . , . . . ChemPhysChem **2009**, 10, 2516–2523.
- (53) , **H**. **H w**i , . ii, . J. Phys. Chem. B **2005**, 109, 6103–6110.
- (54) In , . . , . In , . In , . . J. Photochem. Photobiol., A: Chem. 2008, 193, 1 4 6.
- (55) , . Fq. II t t , . D , . J. Phys. Chem. B 1997, 101 212 220.
- (56) , . H. ll t t , . D , . Langmuir 1997, 13, \$30-\$36.
 (5) t , . tti, . , . i j tti,
- . . J. Pharm. Sci. **2002**, 91, 230 –2316.
- ($\boldsymbol{5}$) tt,.O,. $\boldsymbol{\psi}$ i, $\boldsymbol{\xi}$ it i,. J. Chem. Eng. Data **2007**, 52, **24** –251.
- (5) **p**, .H. il, .**D**. H. l, . . , . . Rapid Commun. Mass Spectrom. 2009, 23, 3 03–3 12.
- (60) lj, . 🙌 i , . , . Rapid Commun. Mass Spectrom. **2009**, 23, 1 1–**3** 0.
- (61) **•** 1, . Drug Discovery Today **2008**, 13, 60– 2.
- (62) ', i 1 , . . . , . . O. , . . . , i 1 , . . . , i 1 , . . . J. Polym. Sci., Polym. Chem. **2009**, 47, 661 –662 .
 - (63) Lil, . . it , . wil, . iww., . , . . Biomacromolecules **2010**, 11, 1 10–1 15.
- (64) i , . , , . , . , . , . J. Phys. Chem. B 2008, 112, 1445–1450.