[Article]

www.whxb.pku.edu.cn

Synthesis of BaSO₄ Nanofibers Controlled by the Yield of Hydrated Electrons in AOT-Based Microemulsions

XU Wen-Li CHEN Qing-De^{*} SHEN Xing-Hai^{*}

(Beijing National Laboratory for Molecular Sciences, Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China)

Abstract: Single-crystal BaSO₄ nanofibers and multi-architecture bundles were successfully synthesized in sodium bis(2- ethylhexyl) sulfosuccinate (AOT)- based microemulsions containing $K_2S_2O_8$ and BaCl₂, in which the controlled release of SO₄²⁻ ions was realized *in situ* by the radiolytic reduction of $S_2O_8^{2-}$ ions. The molar ratio of water to surfactant (values), the counterions of Ba²⁺, and the addition of aromatic compounds into the oil phase of the microemulsions were used to adjust the yield of hydrated electrons (e_{aq}^{-}). This allowed for controlling the reduction of $S_2O_8^{2-}$ ions and the release of SO₄²⁻ ions, leading to the shape manipulation of BaSO₄ nanoparticle. With an increase in values or dose rate, the yield of e_{aq}^{-} increased, which led to a quicker release of SO₄²⁻ ions, and this did not favor the formation of BaSO₄ nanofibers. When BaCl₂ was replaced with Ba(NO₃)₂ the formation of nanofilaments became possible at a higher dose rate and a higher value, because NO₃ effectively decreased the yield of e_{aq}^{-} and the rate of $S_2O_8^{2-}$ ion reduction. When toluene was added into the oil phase of the microemulsions, the excess electrons were effectively scavenged in the oil phase, and the concentration of e_{aq}^{-} in the water pool decreased. This favored the formation of nanofibers at higher dose rates.

Received: March 28, 2014; Revised: April 28, 2014; Published on Web: April 29, 2014.

Corresponding authors. CHEN Qing-De, Email: qdchen@pku.edu.cn; Tel: +86-10-62755200. SHEN Xing-Hai, Email: xshen@pku.edu.cn; Tel: +86-10-62765915.

The project was supported by the National Natural Science Foundation of China (91226112), Specialized Research Fund for the Doctoral Program of Higher Education of China (20110001120121), and Coordinated Research Projects of International Atomic Energy Agency (CRP Research Contract No. 15107).

2.2 BaSO₄

 $0.1 \text{ mol} \cdot L^{-1} \text{ AOT}$ 0.04 mol· L^{-1} Ba²⁺ (BaCl₂ Ba(NO₃)₂) D/MAX-PC2500 X $0.04 \text{ mol} \cdot L^{-1} \quad K_2 S_2 O_8$ ($ME(BaCl_2) ME(Ba(NO_3)_2)),$ 5

8 12 20 . 20 min (10 kGy.),

.

2.3

, 12000 r· \min^{-1} 10 min , . , FEI Tecnai G2 ,FEITecnai G2XRD(2a)T20(TEM)Nova Nano SEM 430(JCPDS card No. 24-1035) (SEM) , 200 5 (SAED) kV, (HRTEM) . Oxford

INCA X-sight (EDS) . , X (Cu K_{α}) (=0.154056 nm).

3

3.1 BaSO₄

10 Gy \cdot min⁻¹ , ME(BaCl₂) 1 (=8) . 1(a, b)

. , 5 µm, 20-30 nm XRD (2a) $BaSO_4$, BaSO₄. 2b EDS , Ba S O , BaSO₄. , Na C

: AOT

(a, c) =8; (b, d) =12. The barium source is BaCl₂ and the dose rates are 60 Gy·min⁻¹ (a, b) and 120 Gy·min⁻¹ (c, d), respectively.

 SO_{4}^{2-}

21

3.2.3

(3).	SAED (, 3c)	
$BaSO_4$	(122) (211) (020) (120)	
,	BaSO ₄ . e_{aq}^{-}	
	$,^{16-19} \mathrm{SO}_{4}^{2-}$.	
20 ,		
\mathbf{Ba}^{2+}	,	
	, ,	
	: =5 ,	9–
15 nm ,	=8	20-
30 nm ;	=12 ,	,
30–50 nm		

3.2.2

10 Gy · min⁻¹ 60 Gy \cdot min⁻¹ , $ME(BaCl_2)$ (=8, 12) $BaSO_4$ 10 18 nm (-4(a, b))., 120 Gy· min⁻¹ , ME(BaCl₂) (=8, 12) BaSO₄ (4(c, d)). $\bar{e_{aq}}$, ,

a

 $NO_{3}^{-}+e_{aq}^{-}$ NO_{3}^{2-} (k=9.7×10⁹ L· mol⁻¹· s⁻¹) (2)

via ME(Ba(NO₃)₂): 0.1 mol· L⁻¹ AOT in isooctane, in water pool, [Ba(NO₃)₂]=0.02 mol· L⁻¹, [K₂S₂O₈]=0.02 mol· L⁻¹; (a) =8; (b) =12. The barium source is Ba(NO₃)₂ and the dose rate is 60 Gy· min⁻¹.

via The barium source is $BaCl_2$ and the dose rates are 60 Gy· min⁻¹ (a) and 120 Gy· min⁻¹ (b), respectively.

	4						
Barium source	Dose rate	Additivo	Morphology				
	$\overline{(\text{Gy} \cdot \text{min}^{-1})}$	Additive	=5	=8	=12	=20	
BaCl ₂	10	-	nanofilament bundles	nanofilament bundles	nanofilament bundles	quasi-spherical anoparticles	
	60	-	-	quasi-spherical anoparticles	quasi-spherical nanoparticles	-	
		toluene	-	nanofilament bundles	-	-	
	120	-	-	quasi-spherical nanoparticles	quasi-spherical nanoparticles	-	
		toluene	-	nanofilament bundles	-	-	
Ba(NO ₃) ₂	60	-	_	nanofilament bundles	short nanofibers	-	

 $Cl^{-}+e_{aq}^{-}$ products ($k < 1.0 \times 10^{6} L \cdot mol^{-1} \cdot s^{-1}$) (3) 3.2.4

				4				
$BaSO_4$,	ME(BaCl ₂)			γ-	$K_2S_2O_8$	BaCl ₂	AOT
(0.3	$36 \text{ mol} \cdot L^{-1}$).	60 12	20 Gy· min ⁻¹		, SO ₄ ²⁻		,	
,	8		$BaSO_4$	\mathbf{SO}_4^{2-}		$BaSO_4$		
	(6).			,				
e_{aq}^{-}				,				
(e_{oil})			e_{oil}^-			Bas	SO_4	
	,		$(Eq.(4))^{35}$:	, ε	aq	, SO ₄ ²⁻
(:		$\bar{e_{oil}}$,	BaSO ₄		;
,),	NO_3^-	e_{aq}^{-}	$S_2O_8^{2-}$,
	e _{oil}	,					Ba(NO	$_{3})_{2}$
$e_{\rm aq}^-$, SO ₄ ²⁻	,			BaSO ₄	;		
			Ba ²⁺ ,	, e_{oil}^-	,	$e_{\rm aq}^-$,	
					$BaSO_4$,
CH	$_{3}C_{6}H_{5} + e_{oil}$	$\xrightarrow{\text{ane}} CH_3C_6H_5^-$			e_{aq}^{-}			
(<i>k</i> =	$4.0 \times 10^9 \text{ L} \cdot \text{ mol}^{-1} \cdot$	s ⁻¹)	(4)		. ,	e_{aq}^-		
		1.	,		$BaSO_4$			
,					,			
e_{aq}^-	$BaSO_4$,						,
		Б	a .o.					

 e_{aq}^- BaSO₄

- Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 105, 1025. doi: 10.1021/cr030063a
- (2) Eastoe, J.; Hollamby, M. J.; Hudson, L. dv. Colloid Interface Sci. 128–130, 5. doi:10.1016/j.cis.2006.11.009
- (3) Destrée, C.; B.Nagy, J. dv. Colloid Interface Sci. 123– 126, 353. doi:10.1016/j.cis.2006.05.022
- (5) He, P.; Shen, X. H.; Gao, H. C. *cta Phys. -Chim. Sin.* 20, 1200. [, , , 20, 1200.] doi: 10.3866/PKU.WHXB20041007
- (6) Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhao, Z. G. J. Phys. Chem.
 B 101, 3460. doi: 10.1021/jp970419k
- Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhao, Z. G. Colloid Surf. - *Physicochem. Eng. sp.* 108, 117. doi: 10.1016/0927-7757 (95)03317-3
- (8) Hopwood, J. D.; Mann, S. Chem. Mater. 9, 1819.
 doi: 10.1021/cm970113q
- (9) Bagwe, R. P.; Khilar, K. C. Langmuir 13, 6432. doi: 10.1021/la9700681
- (10) Modes, S.; Lianos, P. J. Phys. Chem. 93, 5854. doi: 10.1021/j100352a040
- (11) Han, Y.; Zhu, L.; Shen, M.; Li, H. H. *cta Phys. -Chim. Sin.*29, 131. [, , , , , .
 29, 131.] doi: 10.3866/PKU.WHXB201210082
- (12) Zhu, W. Q.; Xu, L.; Ma, J.; Ren, J. M.; Chen, Y. S. *cta Phys. -Chim. Sin.* 26, 1284. [, , , , ,
 , , , , , 26, 1284.] doi: 10.3866/
 PKU.WHXB20100333
- (13) Belloni, J. *Catal. Today 113*, 141. doi: 10.1016/j. cattod.2005.11.082
- (14) Abedini, A.; Daud, A. R.; Hamid, M. A. A.; Othman, N. K.;
 Saion, E. *Nanoscale Res. Lett.* 8, 1. doi: 10.1186/1556-276X-8-1
- (15) Chen, Q. D.; Shen, X. H.; Gao, H. C. dv. Colloid Interface Sci. 159, 32. doi: 10.1016/j.cis.2010.05.002
- (16) Wong, M.; Grätzel, M.; Thomas, J. K. Chem. Phys. Lett. 30, 329. doi: 10.1016/0009-2614(75)80134-5

- (17) Adhikari, S.; Joshi, R.; Gopinathan, C. Int. J. Chem. Kinet.
 30, 699. doi: 10.1002/(SICI)1097-4601(1998)
- (18) Gebicki, J. L.; Gebicka, L.; Kroh, J. J. Chem. Soc.-Faraday Trans. 90, 3411. doi: 10.1039/ft9949003411
- Pileni, M. P.; Hickel, B.; Ferradini, C.; Pucheault, J. Chem.
 Phys. Lett. 92, 308. doi: 10.1016/0009-2614(82)80282-0
- (20) Chen, Q. D.; Shen, X. H.; Gao, H. C. J. Colloid Interface Sci. 308, 491. doi: 10.1016/j.jcis.2006.12.021
- (21) He, P.; Shen, X. H.; Gao, H. C. J. Colloid Interface Sci. 28, 510. doi: 10.1016/j.jcis.2004.10.060
- (22) Chen, Q. D.; Shen, X. H.; Gao, H. C. J. Colloid Interface Sci. 312, 272. doi: 10.1016/j.jcis.2007.03.036
- (23) Romero-Ibarra, I. C.; Rodriguez-Gattorno, G.; Garcia-Sanchez,
 M. F.; Sanchez-Solis, A.; Manero, O. *Langmuir* 26, 6954. doi: 10.1021/la904197k
- (24) Niemann, B.; Veit, P.; Sundmacher, K. Langmuir 2, 4320. doi: 10.1021/la703566v
- (25) Nagaraja, B. M.; Abimanyu, H.; Jung, K. D.; Yoo, K. S.
 J. Colloid Interface Sci. 316, 645. doi: 10.1016/j.
 jcis.2007.09.004
- (26) Jones, F.; Richmond, W. R.; Rohl, A. L. J. Phys. Chem. B 110, 7414. doi: 10.1021/jp054916+
- (27) Coveney, P. V.; Davey, R.; Griffin, J. L.; He, Y.; Hamlin, J. D.;
 Stackhouse, S.; Whiting, A. J. m. Chem. Soc. 122, 11557. doi: 10.1021/ja990885i
- (28) Lutter, S.; Koetz, J.; Tiersch, B.; Kosmella, S. J. Disper. Sci. Technol. 30, 745. doi: 10.1080/01932690802643113
- (29) Iida, S.; Shoji, T.; Obatake, N.; Sato, H.; Ohgaki, K. J. Chem. Eng. Jpn. 38, 357. doi: 10.1252/jcej.38.357
- (30) Li, M.; Mann, S. Langmuir 16, 7088. doi: 10.1021/ la0000668
- (31) Chen, Q. D.; Bao, H. Y.; Shen, X. H. *Radiat. Phys. Chem.* 77, 974. doi: 10.1016/j.radphyschem.2008.02.001
- (32) Chen, Q. D.; Shen, X. H. Cryst. Growth Des. 10, 3838. doi: 10.1021/cg100307r
- Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B.
 J. Phys. Chem. Ref. Data 17, 513. doi: 10.1063/1.555805
- (34) Zhou, J.; Zhao, H. K.; Shi, J. F.; Chen, Q. D.; Shen, X. H.
 Radiat. Phys. Chem. 97, 366. doi: 10.1016/j.
 radphyschem.2013.07.027
- (35) Tupikov, V. I. Organic Radiation Chemistry Handbook; Milinchuk, V. K., Tupikov, V. I. Eds.; Ellis Horwood Ltd.: Chichester, 1989; p 46.