34	10		Vol. 34 Iss. 1
2017	10	CHINESE JOURNAL OF APPLIED CHEMISTRY	Oct. 2017
		刘小冬 陈庆德* 沈兴海*	

100871

Iss. 10

ThO	2					
			ThO ₂	2	NH _{4 4} UO ₂	CO _{3 3}
		2 m	mol/L NH ₄ H	$ICO_3 = 20 \text{ mmol/L}$		-HCl
NH _{4 4} UO ₂ CO _{3 3}	pH = 8.45	ThO_{2}				
$20 \text{ mg/L} \text{ThO}_2$			6.	.52 mg/g ThO ₂		
Freundlich	ThO_2					
ThO_2			UO_{2}^{2+}	Ga^{2+} Cu^{2+}	Ni ²⁺	
ThO_2						
0615		А		1000-0518 2017	7 10-1177-09	
DOI 10.11944/j.issn.10	00-0518.2017.1	0.170149				
ThO_2					1-3	4-6
7-8 9-10						
ThO_2						
Wang ⁷	ThO				ThO ₂	
a o	Misl	ыњ ⁸			ThO	
\mathbf{p}^{2+}	Su ²⁺	iii a				
La TLO	51			UO^{2+}	Gu	lpa
				UU_2		
ThO ₂		2				
UO_2 CO_3 $\frac{4}{3}$	ThO_{2}	CO_3^2				
		ThO) ₂	$\rm NH_4$ 4 $\rm UO_2$ C	20 _{3 3} Tris-	HCl
1						
1.1						
Tecna i G2 T20		TEM	FEI	200	kV Nova Nar	no SEM 430
SEM	FEI		10 kV H	Riga ku Dma x-2000) X	XRD
Riga ku Cu	$\alpha \lambda = 0.1$	5418 nm	Prodigv	G. ••		ICP-
AES Leeman	Dionex mode	1 ICS-900		Dionex		IonB cAS16
				2101104		
2017-05-11 2017-06-12	2017-07-04					

万方数据

TZ2016004

U1507203 91226112 Tel 010-62755200 $E\text{-}m_{\!R}$ il qdchen@pku.edu.cn

Tel 010-62765915 E-na il xshen@pku.edu.cn

 $250 \times 4 \text{ mm}$ IonPa cAG 1650×4 mm 30 mmol/L KOH 0.8 mL/min AMMS-300 75 mA T70 Delta 320 pН Mettler Toledo ASAP-2010 Micrometer Th NO_{3 4} $^{\bullet}$ 4H₂O UO, NO₃, 6H,0 Chema pol Tris 1.2 NH_{4 4} UO₂ CO_{3 3} 350 °C 3 h 12 $UO_2 NO_3 \stackrel{\bullet}{_2} 6H_2O$ UO_{2} 90 mL NH_4HCO_3 1.8 g UO₃ 60 °C NH_{4 4} UO₂ CO_{3 3} 3% NH₄HCO₃ 40 °C $NH_4 \ _4 \ UO_2 \ CO_3 \ _3$ 71% /% C 6. 87 6. 90 H 3. 09 3. 09 N 10. 70 10. 73 1.3 ThO₂ 7 1. 1042 g Th NO₃ $_{4}^{\bullet}$ 4H₂O 60 mg 2 mL ThO₂ 50 mL 100 mL 120 °C 4 h 800 °C 5 h ThO₂ ThO₂ 1.4 ThO₂ 30 mg ThO_2 10 mL 20 ~ 120 mg/L NH_{4 4} UO₂ CO_{3 3} 2 mmol/L NH₄HCO₃ 20 mmol/L Tris-HCl pH =8.45 25 °C ICP-AES 1 mg∕g $oldsymbol{
ho}_0 oldsymbol{
ho}_{
m e}$ 1 $ho_{
m e}~{
m mg/L}$ ho_0 mg/L L ThO₂ g 30 mg ThO₂ $N_{a} + Mg^{2} + Ga^{2} + Cu^{2} + Ni^{2} +$ 20 mg/L $UO_2 CO_3 \frac{4}{3}$ $Cl^- Br^- NO_3^- SO_4^2$ 20 mg/L 25 °C **ICP-AES** 2 U/M ______ d M 2 $_{d U} mL/g = _{d M} mL/g$ ThO₂ 3 d $_{\rm d} = \frac{\rho_0 \quad \rho_{\rm e}}{\rho_{\rm e}} \times 1000$ 3 1.5 ThO₂ 25 °C 10 mL 0. 01 ~ 0. 05 mol/L ThO₂ **ICP-AES** 4 4 ρ_{e}

 ρ_0

ρ 瓦克数据

1.6 ThO₂

	$_{\rm pH}$		4.01 6.86	9.18	3	$_{\rm pH}$	рН
25 °C		pН	6~8			−52 mV/pH	

06407f0 Tr 10.285714 0 0 10.285714 0 -8.742857 Tm 37.2586541.7 (5 T9.11701) Ti 3 1 Tf 0 Tr 21.250286 0 0 21.250286 0 -8.742857 Tm 15.997634 TD415598.06502å (a) Tj /F3 1 Tf 0 Tr 21.250286 0 0 21.250286 0 -8.742857 Tm 17.362953 181D (98.06502a) Tj 0.305943 0 196(_)Tj 0. 0.502293 0 0 1 Tf 0 Tr 10.525125 0 .741792 TD (06857f 0 Tr 10

1181

4	Langinu	in Freuhunen			
	Table 2	Fitting results of t	the Langmuir and	Freundlich	models

	Ia ngmuir pa a meters		Freund	lich pana meters	
∕ L• mg ⁻¹	_{max} ∕ mg ^e g ^{−1}	2	$_{\rm f}$ / mg [•] g ^{-1•} mg ^{-1•} L ^{1/}		2
0.97 ± 0.45	9.53 ± 0.54	0.854	4.97 ± 0.40	5.59 ± 0.74	0.934

2.4

 ThO_2

	$3 mtext{ThO}_2$
Table 3	Desorption parameters of ThO_{2} nanospheres after uranium adsorption

0.01	4	73.9	1.05
		15.7	1.05
	24	81.6	0.80
0.02	8	77.6	1.77
	24	77.4	2.50
0.03	8	79.4	1.10
	24	81.0	1.39
0.04	8	78.9	1.03
	24	78.0	1.20
0.05	8	81.3	3.51
下亡粉捉	24	81.7	3.07

1102						
20 mg	/L	ThO ₂			3	
HCl	mol/L	h		$ ho_{ ext{Th}}$ mg	/L	
		T	hO ₂			
		1.29 mg/L	ThO_2			
	3		0.01 mol/L			
		0.05 mol/L	8 h			
ThO_2				Th		
	0.01 mol/L	24 h				
2.5						
			UO_2 CO_3 $\frac{4}{3}$		UO_2^{2} +	
	$N_a + Mg^{2+}$	$Ga^{2+} Sr^{2+} Cu^{2+} Ni^{2+}$	UO ₂ CO ₃ ⁴⁻ ₃			
Cl- B	Br^{-} NO ₃ ⁻ SO ₄ ²⁻	ThO_2		NI	H_4 4 UO_2 CO_3	3
		ThO_2		ThO_2		
		d	4			
		4 ThO ₂				
		Table 4 Selective adsorpt	ion properties of ThO ₂	2 nanospheres		
		$_{\rm d~U}$ / mL $^{\bullet}$ g $^{-1}$	_{d M} ∕ mL• g	-1	U/M	
	Na +	$3.68 \pm 0.58 \times 10^3$	0			
	Mg ² +	$1.29 \pm 0.12 \times 10^{3}$	3.56 ± 0.07	$\times 10^{1}$	36.12 ± 2.73	
	Ga^{2+}	$4.18 \pm 0.06 \times 10^{2}$	2.56 ± 0.15	$\times 10^{2}$	1.64 ± 0.10	
	Ni^{2+}	$3.98 \pm 0.16 \times 10^{2}$	1.66 ± 0.02	$\times 10^{2}$	2.40 ± 0.07 1.06 ± 0.03	
	Cu	$4.03 \pm 0.10 \times 10$	5.81 ±0.07	X 10	1.00 ±0.05	
		NH_{4-4}	$UO_2 CO_{3}$	Na +	Mg^{2+}	ThO ₂
				Ga^{2+} Cu^{2+}	Ni ^{2 +}	ThO_2
		1				
			r	ГhO ₂		
	ThO ₂		UO_{2}^{2+}			
2.6	-		-			
Т	hO_2	рН				
		ThO_2	8.5~11	17	ThO_2	
		ThO ₂	рН		-	pН
	ThO_2	ThO ₂				
ThO ₂			Wa ng 7	ThO ₂		
-	ThO ₂		- Mis	sha ⁸	ThO_2	
	- < Hq	11		B_{a}^{2+} Sr^{2+}	-	
	r - ,					

рН 8.45

Park¹⁸

8. 87 × 10⁻³ mol/L

2 mmol/L NH₄HCO₃ 20 mmol/L

 ThO_2

Tris-HCl

万方数据 ThO_2

	ThO_2			
ThO_2		ThO_2	$2 \text{ mmol/L } \text{NH}_4\text{HCO}_3$	
20 mmol/L T	ris-HCl		pH	
ThO_2	N_a + NO_3^-		8. 87 × 10 ⁻³ mol/L	

Na NO₃

ThO,

An ta ni

Ni^{2 +}

材 (Supporting Informa tion) [ThO₂ XRD (http://yyhx.cia.c. jl. cn/) ↓ 。

- Jaya a man V Krishna murthy D Ga nesa n R
 Development of Yttria -Doped Thoria Solid Electrolyte for Use in Liquid Sodium Systems J.
 2007 13 5 299-303.
- 2 Antony S A Naganja K S Sreedhan O M. Prepantion of 15mol% YO_{1.5}-Doped ThO₂ Disk Electrolytes by a Polymeric Gel-Combustion Method J. 2001 295 2/3 189-192.
- 3 Cosentino I C Muccillo R. Properties of Thorà -Yttrà Solid Electrolytes Prepa red Cita te Technique J . 1997
 32 5/6 295-300.
- 4 Ja cobs G Ca wford A Williams L . Low Tempera ture Wa ter-Ca s Shift Comparison of Thoria and Ceria Gata lysts J . - 2004 267 1/2 27-33.
- 5 B_a idya T van Vegten N B_a iker A. Selective Conversion of Eth_a ne to Ethene Oxida tive Dehydrogena tion over G_a -Doped ThO₂ Using CO₂a s Oxida nt J . 2011 54 13/15 881-887.
- 6 Ta ba kova T Ida kiev V Tenchev K Applications J . - 2006 63 1/2 94-103. Ca ba lyst for Fuel Cell
- 7 Wa ng L Zha o R Wa ng X W . Size-Tuna ble Synthesis of Monodisperse Thorium Dioxide Na nopa rticles a nd Their Performa nce on the Adsorption of Dye Molecules J . 2014 16 45 10469-10475.
- 8 Mishna S P Tiwa ry D. Ion Excha ngers in Ra dioa ctive Wa ste Ma na gement-Ra diotna cer Studies on Adsorption of Ra II and Sr II Ions on Hydrous Thorium Oxide J.
 1995 196 2 353-361.
- 9
 Gupta S K Gupta R Natation V
 . Warm White Light Emitting ThO2: Sm3+ National Cationic Surfactant Assisted Reverse Micellar Synthesis and Photoluminescence Properties J .

 2014
 49
 297-301.
- 11 Gupta A R Venkatan na ni B. Sorption of Un nyl Ions on Hydrous Oxides. A New Surface Hydrolysis Model J. 1988 61 4 1357-1362.
- 12 Wa ng Y M Chen Q D Shen X H. Prepa a tion of Low-Tempea ture Sintered UO₂ Na nona teria ls by Ra diolytic Reduction of Ammonium Un nyl Trica rbona te J . 2016 479 162-166.
- 13 Liu X Y Liu H Z Ma H J . Adsorption of the Una nyl Ions on a n Amidoxime-Ba sed Polyethylene Nonwoven Ea bric Prepa red by Preira dia tion-Induced Emulsion Gn ft Polymeria tion J . 2012 51 46 15089-15095.
- 14
 Singh K Sla h C Dwivedi C
 . Study of Un nium Adsorption Using Amidoxina ted Polya crylonitrile-Enca psula ted

 Ma croporous Bea ds J .
 2013
 127
 1
 410-419.
- 15 Sun Y B Ya ng S T Sheng G D . Comparison of U VI Removal from Conta mina ted Groundwa ter by Na noporous Alumina a nd Non-Na noporous Alumina J .

bo

u o

c e 🗸 a

uc wia

Adsorption Performance of Thorium Dioxide Nanospheres Towards Uranium in the Aqueous Solution of Ammonium Uranyl Tricarbonate

LIU Xia odong CHEN Qingde * SHEN Xingha i *

100871

Abstract Thorium dioxide ThO_2 a kind of a ctinide metal oxides has good performance as a doorbent but it is necessary to extend their application scope. In the present work we investigated the a dsorption property of ThO_2 has no spheres prepared by hydrothermal method in the a queous solution of a mmonium unanyl trice rbomate. In the presence of 2 mmol/L NH₄HCO₃ and 20 mmol/L tris hydroxymethyl a minomethan e -HCl ThO₂ has no spheres had an a dsorption capacity of 6.52 mg/g when the initial concentration of up nium was 20 mg/L which followed pseudo-second-order kinetic model well. In isothermal a dsorption studies Freundlich model was preferable. The desorption of ThO₂ has no spheres after a dsorption was a chieved casily by using dilute HCl solution. In the mechanism rescarch it was found that ThO₂ has no spheres have negative charges under the experiment conditions and a dsorb UO_2^{2+} cation a dsorption mechanism. However, the una nium upta ke was seriously affected by other cations such as Ga^{2+} $Cu^{2+}a$ and Ni^{2+} . This work will contribute to the recovery of unanium from sea was ter and alka line/neutral in divactive waste by metal oxides. **Keywords** thorium dioxide unanium a dsorption a mmonium unanyl trice rboma te

Received 2017-05-11 Revised 2017-06-12 Accepted 2017-07-04

Supported by Science Cha llenge Project No. TZ2016004 the Na tional Na tunal Science Foundation of China No. U1507203 No. 91226112 Corresponding a uthor CHEN Qingde a ssocia te professor Tel 010-62755200 E-ma il qdchen@pku.edu.cn Research interests supra molecula r chemistry and nuclear fuel chemistry

Co-corresponding a uthor SHEN Xingha i professor Tel 010-62765915 E-mail xshen@pku.edu.cn Research interests supma molecular chemistry and 成語 提出 chemistry