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through a SNAr pathway/C–N bond cleavage to generate a N,O-
diarylhydroxylamine intermediate,16 which could undergo a
cascade [3,3]-sigmatropic rearrangement and rearomatization
to form NOBIN-type (2-amino-2′-hydroxy-1,1′-binaphthyl) pro-
ducts (Scheme 1c).

Results and discussion

We began our investigation by conducting the reaction of
N-hydroxy-N-(naphthalene-2-yl)-benzamide 1a and 4-acetyl-N,
N,N-trimethylbenzenaminium trifluoromethanesulfonate 2a in
the presence of various organic bases in DMF at room temp-
erature under air. We found that the expected biaryl product
3a was obtained in 34% yield in the presence of tBuOK while
tBuONa and NaHDMS were ineffective (Table 1, entries 1–3).
The screening of solvents revealed that the polar solvent
DMSO was more efficient than other less polar solvents (DCE,
THF, toluene and 1,4-dioxane), which is in accordance with
other reported SNAr reactions15,16b (Table 1, entries 4–8). When
we increased the amount of aryltrimethylammonium salt 2a
from 1.2 to 1.5 equivalents, the yield of the target product was
slightly decreased (Table 1, entry 9). To our delight, the corres-
ponding biaryl product 3a was obtained in 80% yield when we

employed 2.0 equivalents of tBuOK rather than 1.5 equivalents
(Table 1, entry 10). Other frequently used inorganic bases,
including K3PO4, KOH, NaOH, Na2CO3 and K2CO3, were also
examined and the results showed that tBuOK is the best
option (Table 1, entries 11–15). It is worth noting that the inert
atmosphere does not affect the efficiency of this cascade trans-
formation (Table 1, entry 16). In addition, other quaternary
ammonium salts 2a′ and 2a″ with different anions rather than
−OTf were also investigated and they were found to be less
effective than 2a (Table 1, entries 17 and 18). Finally, we found
that 1.5 equivalents of aryltrimethylammonium salt 2a, and
2.0 equivalents of tBuOK in DMSO at room temperature were
the optimal reaction conditions (Table 1, entry 10).

We next investigated the scope and limitation of this reac-
tion. In most cases, this cascade protocol proceeded smoothly
to generate NOBIN analogues in moderate to good yields and
excellent regioselectivities under the optimized reaction con-
ditions (Scheme 2). We first investigated various protecting
groups on the nitrogen atom of the arylhydroxylamine and the
benzoyl group was found to be the best choice to afford a good
yield of the expected biaryl product (Scheme 2, entries 1–5).
The reaction of arylhydroxylamine 1a and aryltrimethyl-
ammonium salts with diverse substituents on the phenyl ring
revealed that strong electron-withdrawing groups, such as Bz,
CN, NO2, and SO2Me, afforded the expected products in mod-
erate to good yields (Scheme 2, entries 6–9). Nevertheless, the
reactions of 1a and aryltrimethylammonium salts with para-
substituted weak electron-withdrawing groups (F, Cl, Br, CO2Et
etc.) or electron-donating groups (Me) or electron-neutral
ammonium salts (phenyl, naphthyl) usually showed weak reac-
tivity or complex reaction mixtures were obtained (for more
details, see the ESI†).

Subsequently, we turned our attention to explore the sub-
strate scope of arylhydroxylamines in this tandem transform-
ation (Scheme 2, entries 10–28). The variation of different sub-
stituents at the 6-, 7-, 3-position of 2-naphthalenylhydroxyla-
mines was then evaluated. Both electron-donating groups and
electron-withdrawing groups were well tolerated in this tandem
reaction to afford the corresponding NOBIN-type biaryl pro-
ducts in moderate to good yields (Scheme 2, entries 10–20).
1-Naphthalenylhydroxylamines were amenable to this trans-
formation as well (Scheme 2, entries 21 and 22). To our delight,
this cascade protocol was also suitable to substituted phenyl-
hydroxylamines albeit with relatively lower yields than the
corresponding naphthylhydroxylamines under standard reac-
tion conditions (Scheme 2, entries 23–26). Notably, phenyl-
hydroxylamine with a strong electron-withdrawing group (NO2)
is applicable to this transformation when the protecting group
was switched to an electron-donating group (Me) (Scheme 2,
entry 26). We delightfully found that heteroarylhydroxylamines,
such as N-(6-fluoropyridin-2-yl)-N-methylhydroxylamine 1t and
N-(5-iodopyridin-2-yl)-N-methylhydroxylamine 1u, can also be
introduced into this cascade reaction to afford heterobiaryl pro-
ducts in moderate yields (Scheme 2, entries 27 and 28). The
structure of 3q was explicitly confirmed by the single crystal
X-ray diffraction study (Scheme 2, entry 17).

Table 1 Optimization of reaction conditionsa

Entry Base Solvent Yieldb (%)

1 tBuOK DMF 34
2 tBuONa DMF Trace
3 NaHMDS DMF N.P.
4 tBuOK DMSO 51
5 tBuOK DCE Trace
6 tBuOK THF 27
7 tBuOK Toluene 26
8 tBuOK 1,4-Dioxane 24
9c tBuOK DMSO 36
10d tBuOK DMSO 80
11d K3PO4 DMSO N.P.
12d KOH DMSO 25
13d NaOH DMSO Trace
14d Na2CO3 DMSO N.P.
15d K2CO3 DMSO Trace
16d,e tBuOK DMSO 75
17 f tBuOK DMSO 30
18g tBuOK DMSO 15

a Reaction conditions: 1a (0.2 mmol), 2a (1.2 equiv.), base (1.5 equiv.),
solvent (2 mL) under air at 25 °C for 2 h. b Yields of the isolated pro-
ducts. c 1.5 equivalents of 2a were employed. d 1.5 equivalents of 2a
and 2.0 equivalents of base were employed. e Under N2.

f 1.5 equiva-
lents of 2a′ and 2.0 equivalents of base were employed. g 1.5 equiva-
lents of 2a″ and 2.0 equivalents of base were employed. Bz = benzoyl,
Ac = acetyl, N.P. = no product.
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In order to gain deeper insight into the mechanism of this
cascade reaction, a control experiment was conducted in the
presence of a radical scavenger, such as TEMPO, and it was
found that the reaction still proceeded smoothly to generate
the corresponding biary product in 84% yield (Scheme 3a).
This result suggested that a radical pathway can be excluded
and a nucleophilic aromatic substitution mechanism is more
likely in this cascade reaction.

Finally, the usefulness and practicality of this cascade protocol
were exemplified by scale-up synthesis and the synthetic trans-
formations of these biaryl products (Schemes 3b and 4). This
method is synthetically practical since it is readily scalable and
grams of the NOBIN-type product can be prepared in good yield

under mild conditions (Scheme 3b). As shown in Scheme 4, the
biaryl product 3h can be further O-arylated with arylboronic acid
through a Chan–Lam reaction (Scheme 4a).17 Biaryl diamine 5
can be generated in good yield via the simultaneous reduction of
the nitro group and deprotection of amine in one pot while
hydrazine hydrate was employed (Scheme 4b).18 Palladium-cata-
lyzed intramolecular aminantion/cyclization of compound 6,
which is prepared from 3h in good yield,19 affords benzocarba-
zole 7 in moderate yield (Scheme 4c and d).20 Reduction of 3h
with SnCl2 gave arylaniline 8 in 70% yield,21 which can be further
converted into the corresponding thiourea in 65% yield in the
presence of isothiocyanate (Scheme 4e and f).22

Conclusions

In conclusion, we have presented a general, operationally
simple, cascade SNAr-[3,3] rearrangement–rearomatization
approach to achieve the efficient construction of NOBIN-type
biaryls, which are difficult to synthesize by employing conven-
tional methods, from (hetero)arylhydroxylamines and aryltri-
methylammonium salts in the presence of a base under mild
conditions. A broad range of functional groups can be well tol-
erated and this method provides an efficient strategy to
produce structurally diverse NOBIN analogues. The transform-

Scheme 2 Substrate scope. Reaction conditions: 1 (0.3 mmol), 2
(0.45 mmol), tBuOK (0.6 mmol), DMSO (3 mL) under air at 25 °C for
2 hours. Yields of isolated products are given. Bn = benzyl.

Scheme 3 Large scale reaction and control experiments. TEMPO =
2,2,6,6-Tetramethylpiperidine 1-oxyl.

Scheme 4 Synthetic transformations of biaryl products. (a) Cu(OAc)2,
phenylboronic acid, Et3N, 30 °C, 16 h. (b) Hydrazine hydrate, 150 °C, 8 h.
(c) Tf2O, pyridine, CH2Cl2, 0 °C, 12 h. (d) Pd(OAc)2, Cs2CO3, toluene,
reflux, 16 h. (e) SnCl2, iPrOH, 100 °C, 8 h. (f ) Isothiocyanate, THF, 30 °C,
12 h.
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ation of biaryl products presented great potential to synthesize
novel atropoisomeric biaryl compounds and heterocycles.
Further extension of the potential applications of biaryl pro-
ducts and studies of related transformation are currently
undergoing in our laboratory.
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