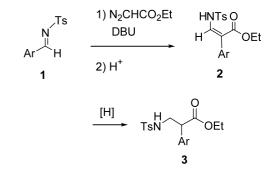


Tetrahedron Letters 44 (2003)

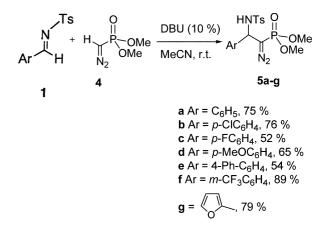
An efficient synthesis of α -aryl β -(*N*-tosyl)and derivatives from α -diazophosphonal

Yonghua Zhao, Nan Jiang and Jianbo Wang*

Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of College of Chemistry, Peking University, Beijing 100871, China

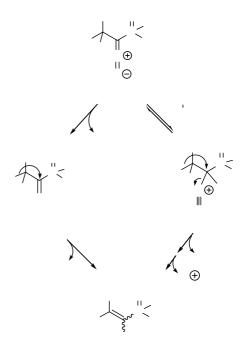

Received 27 March 2003; revised 10 July 2003; accepted 20 August 2003

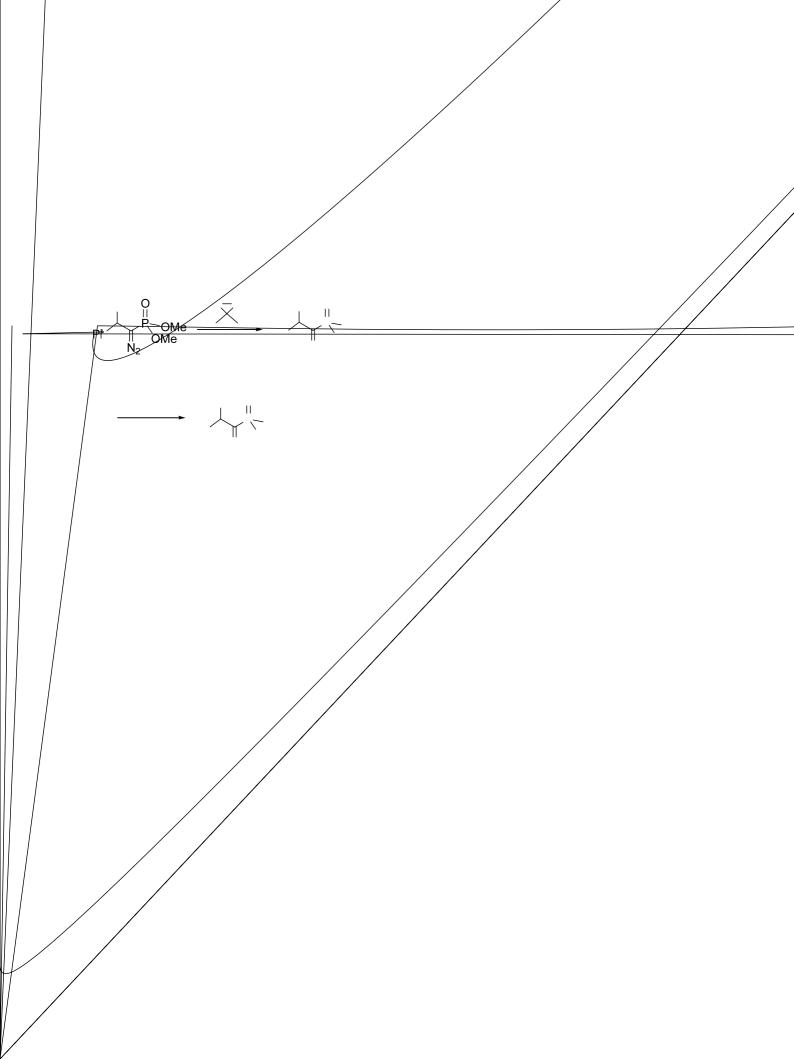
Abstract—The α -diazophosphonate was added to aryl (*N*-tosyl)imine to give β -aryl β -(*N*-tosyl)amino α -diazophosphonates, which were further subjected to TsOH-catalyzed diazo decomposition to yield α -aryl β -(*N*-tosyl)enaminophosphonates through 1,2 aryl migration. The α -aryl β -(*N*-tosyl)enamino phosphonates were hydrogenated to give α -aryl β -(*N*-tosyl)amino phosphonates. \bigcirc 2003 Elsevier Ltd. All rights reserved.


α- Or β-amino phosphonic acid derivatives have attracted considerable attention in recent years because of their involvement in certain biologically important processes.¹ For example, amino phosphonic acid derivatives have been served as the transition state analog in drug design and as haptens in the development of catalytic antibody enzymes.² Consequently, it is desirable to develop efficient approach to synthesize racemic or optically active amino phosphonates.^{1a,3}

We have recently reported the based-catalyzed addition of ethyl diazoacetate to aryl (*N*-tosyl)imines **1** and the subsequent 1,2 aryl migration reaction of the resulting β -(*N*-tosyl)amino α -diazo carbonyl products under Rh(II) complex- or TsOH-catalysis condition.⁴ This two-step reaction sequence transforms ethyl diazoacetate to α -aryl β -(*N*-tosyl)enamino esters **2**, which can be further hydrogenated to give α -aryl β -(*N*tosyl)amino esters **3** (Scheme 1).⁵ We conceived that this highly efficient reaction sequence may be similarly applied to the corresponding α -diazophosphonate to give the corresponding β -amino phosphonate derivatives. The results of our investigation are described herein.

The α -diazophosphonate **4** was prepared according to the literature procedure.⁶ The DBU-catalyzed addition of α -diazophosphonate **4** to aryl *N*-tosylimine **1a**–**g** was carried out at room temperature and the β -aryl β -(*N*tosyl)amino α -diazophosphonates **5a**–**g** were obtained in 54–89% isolated yields (Scheme 2).⁷


Scheme 1.



0040-4039/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.08.124

^{*} Corresponding author.

9. General procedure for the hydrogenation of α -aryl β -enaminophosphonates 8a–g. To a solution of α -aryl β -enaminophosphonate (0.1 mmol) in absolute MeOH (15 mL) was added 10% Pd/C catalyst (10 mg). The reaction mixture was stirred for 24 h under 1 atm hydrogen atmosphere. Then catalyst was removed by filtration and solvent was evaporated to give a residue, which was purified by flash column chromatography. Dimethyl[1-(*p*-phenylphenyl)-2-(*N*-tosylamino)ethyl]phosphonate (12e):

¹H NMR (200 MHz, CDCl₃) δ 2.34 (s, 3H), 3.43–3.52 (m, 1H), 3.54 (d, $J_{\rm HP}$ =8.4 Hz, 3H), 3.67 (d, $J_{\rm HP}$ =11.4, 1H), 5.28 (t, J=9.0 Hz, 1H), 6.90–7.80 (m, 14H). ¹³C NMR (50 MHz, CDCl₃) δ 21.4, 42.8 (d, $J_{\rm CP}$ =45.2 Hz), 45.1, 52.9 (d, $J_{\rm CP}$ =7.2 Hz), 53.6 (d, $J_{\rm CP}$ =6.8 Hz), 126.9, 127.5, 127.5, 127.9, 129.4, 129.5, 129.7, 129.9, 136.9, 140.2, 140.7, 143.4; IR (film): ν 2954, 1607 cm⁻¹. Anal. calcd for C₂₃H₂₆NO₅PS: C, 60.12; H, 5.70; N, 3.05. Found: C, 60.09; H, 5.62; N, 2.83.