研究室工作進展 May. 5th, 2019

The functionalization of white phosphorus (P4) through direct P−C bond formation has been a continuous interest because of the chlorine-free synthesis of organophosphorus compounds. Since the first report of P−C bond formation by reaction of organolithium with P4 in 1963, continuous efforts have been made in order to convert P4 into organophosphorus compounds directly. Although the conversions of P4 to various [MxPy]n complexes have gained great achievements, the direct formation of organophosphorus compounds from P4 are rare. In fact, making organophosphorus compounds through direct P−C bond formation from P4 generally suffers from: i) high electrophilic reactivity of the P4 tetrahedron, ii) the low selectivity for the P−P bond rupture after the first P−P bond cleavage, and iii) the low conversion efficiency of the phosphorus atoms in P4. Thus, the controllable and atom-efficient functionalization of P4 to construct directly organophosphorus or polyphosphorus compounds is highly desirable.
The ate-complexes of aluminacyclopentadienes react with P4 selectively affording the cyclotetraphosphanes featuring four newly formed P−C bonds and a planar square cyclo-P4 ring. DFT calculations show that the conversion of tetrahedral P4 to planar cyclo-P4 moiety undergoes through an unexpected 1,1-P-insertion/D-A reaction/isomerization cascade process. The reaction of these complexes with iodomethane or p-benzoquinone can afford the P-methylation product and the metal-free cyclotetraphosphane, respectively. This work shows a promising synthetic route to the cyclotetraphosphanes starting from P4 and throws a light on the functionalization of P4 to organophosphorus compounds.
亮點介紹
白磷活化直接合成有機膦化合物具有十分重要的科學意義,該過程避免了工業合成中常用的PCl3等劇毒化合物以及産生的廢酸等污染問題。近三十年來,白磷活化的研究一直被人們所關注并取得了一些進展。但到目前為止,該研究領域仍然存在許多挑戰性問題:1)反應選擇性低,産物不可控;2)合成有機膦的效率低且研究匮乏;3)機理研究匮乏;4)f區金屬活化白磷的研究匮乏。因此,由白磷直接高效、高選擇性地合成有機膦化合物就十分重要與必要。
2016年,我們利用丁二烯基橋聯的雙锂試劑與白磷直接反應,在溫和的條件下,首次實現了從白磷直接高效高選擇性合成磷雜環戊二烯基锂的方法(Angew. Chem. Int. Ed. 2016, 55, 9187–9190.)。2017年,我們利用稀土金屬雜環戊二烯同時作為雙親核試劑與雙烯體試劑,通過白磷的[3+1]-碎片化反應,分離和表征了磷雜環戊二烯基锂和第一例稀土金屬cyclo-P3化合物(Angew. Chem. Int. Ed. 2017, 56, 15886–15890.)。2018年,我們詳細研究了磷雜戊二烯基锂的固體聚集态結構,其可以為單體、二聚體、配位聚合物等多種形式(Organometallics 2018, 37, 2018–2022.)。2019年,我們分離并表征了四種磷锂簇合物,其分别為Li3(THF)6P7、Li4(THF)10P14、Li2(THF)6P16和Li4(THF)13P26(Chin. J. Chem. 2019, 37, 71–75.)。
最近,我們研究了鋁雜環戊二烯促進的白磷活化。鋁雜環戊二烯與白磷反應可以高選擇性、高收率地得到含鋁的cyclo-P4化合物,其同時構建了四根P−C鍵,具有一個規整的平面正方形cyclo-P4結構。理論計算表明該反應經曆了一個1,1-P-插入、D−A反應、異構化的串聯反應機理。該化合物與碘甲烷反應可以得到P-甲基化的季鏻鹽化合物,與對苯醌反應可以得到不含金屬的四磷雜環丁烷衍生物。這是目前合成四磷雜環丁烷最高效的方法,也為白磷活化直接合成有機膦化合物提供了一種新思路。