報告摘要
The anticipated shift in focal point of interest of solid- state chemists, crystal engineers and crystallographers from structure to properties to function of organic solids parallels the need to apply our accumulated understanding of the intricacies of crystal structure to explaining the related properties, with the ultimate goal of harnessing that knowledge in applications that require soft, light-weight, and/or biocompatible organic solids. In these developments, the adaptive molecular single crystals warrant a particular attention as a new class of materials for light, flexible, and environmentally benign devices, primarily memories, capacitors, sensors, and actuators. Some of the outstanding requirements for application of these dynamic materials as high-efficiency energy storage devices are strongly induced polarization, high switching field, and narrow hysteresis in reversible dynamic processes. However, having been studied almost exclusively by crystallographers, molecular crystals still lack the appropriate investigations that reliably evaluate their reproducibility, scalability, and actuating performance, and some important drawbacks have diverted the interest of engineers from these materials. United under the umbrella term crystal adaptronics, the recent research efforts aim to realistically assess the appositeness of dynamic crystals for applications that require fast, reversible and continuous operation over prolonged periods of time [1-13]. With the aim to highlight the most recent developments in the research of adaptive molecular crystals, this lecture discusses their assets and pitfalls. Using machine learning for the first time, we identify inherent features and structure-function relationships that fundamentally impact the mechanical response of dynamic molecular crystals. Our approach factors in different crystal properties in tandem and deciphers their intersectional and combined effects on the dynamic performance. It also provides some hints on the likely future developments that capitalize on the untapped, sequestered potential for applications of this distinct materials class.
[1] Mahmoud Halabi, J., Al-Handawi, M. B., Ceballos, R., Naumov, P. (2023) J. Am. Chem. Soc. 145, 12173.
[2] Awad, W. M., Davies, D. W., Kitagawa, D., Mahmoud Halabi, J., Al-Handawi, M. B., Tahir, I., Tong, F., Campillo-Alvarado, G., Shtukenberg, A. G., Alkhidir, T., Hagiwara, Y., Almehairbi, M., Lan, L., Hasebe, S., Prasad Karothu, D., Mohamed, S., Koshima, H., Kobatake, S., Diao, Y., Chandrasekar, R., Zhang, H., Sun, C. C., Bardeen, C., Al-Kaysi, R. O., Kahr, B., Naumov, P. (2023) Chem. Soc. Rev. 52, 3098.
[3] Karothu, D. P., Mahmoud Halabi, J., Ahmed, E., Ferreira, R., Spackman, P. R., Spackman, M. A., Naumov, P. (2022) Angew. Chem. Int. Ed. 61, e202113988.
[4] Spackman, P. R., Grosjean, A., Thomas, S. P., Karothu, D. P., Naumov, P., Spackman, M. A. (2022) Angew. Chem. Int. Ed. 134, e202110716.
[5] Mahmoud Halabi, J., Ahmed, E., Sofela, S., Naumov, P. (2021) Proc. Nat. Acad. Sci. USA 118, e2020604118.
[6] Naumov, P., Karothu, D. P., Ahmed, E., Catalano, L., Commins, P., Mahmoud Halabi, J., Al-Handawi, M. B., Li, L. (2020) J. Am. Chem. Soc. 142, 13256.
[7] Commins, P., Al-Handawi, M. B., Karothu, D. P., Raj, G., Naumov, P. (2020) Chem. Sci. 11, 2606.
[8] Karothu, D. P., Mahmoud Halabi, J., Li, L., Colin-Molina, A., Rodríguez-Molina, B., Naumov, P. (2020) Adv. Mater. 32, 1906216.
[9] Ahmed, E., Karothu, D. P., Warren, M., Naumov, P. (2019) Nat. Commun. 10, 3723.
[10] Li, L., Commins, P., Al-Handawi, M. B., Karothu, D. P., Mahmoud Halabi, J., Schramm, S., Weston, J., Rezgui, R., Naumov, P. (2019) Chem. Sci. 10, 7327.
[11] Ahmed, E., Karothu, D. P., Naumov, P. (2018) Angew. Chem. Int. Ed. 57, 8837.
[12] Commins, P., Tilahun D. I., Karothu, D. P., Panda, M. K., Naumov, P. (2016) Chem. Commun. 52, 13941.
[13] Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K., Boldyreva, E. (2015) Chem. Rev. 115, 12440.
報告人簡介
Panče Naumov(龐澈·瑙莫夫),紐約大學終身教授,馬其頓人,2004 年獲得東京工業大學化學和材料科學博士學位,随後在日本國立材料科學研究所、大阪大學和京都大學從事研究工作,2012年加入紐約大學,并成為紐約大學本校區及阿布紮比分校區終身教授。Naumov 教授目前是紐約大學阿布紮比分校先進材料中心主任,他創立了阿聯酋化學學會及晶體學會,并擔任學會主席。Naumov教授是美國化學學會、英國皇家化學學會會士,哈佛大學 Radcliffe 學者,德國洪堡學者,擔任 JACS、Angew等期刊編委,同時擔任 National Science Foundation (NSF)、 European Research Council (ERC)等基金評審委員會委員。Naumov 教授專注于智能材料、晶體學、生物發光和石油組學的研究,在 Nat. Chem.、PNAS、Nat. Commun.、JACS、Angew. Chem. In. Ed. 等期刊發表超過270篇SCI論文,他引次數1萬餘次。五年來Naumov 科研團隊申請獲批超過 1500萬美元的科研基金,研究項目主要來自于阿布紮比國家石油公司 (ADNOC)、阿布紮比教育委員會(ADEC)、人類科學前沿計劃組織 (HFSPO) 和阿聯酋國家研究基金會(NRF)。